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Abstract—Text labels are widely used to convey auxiliary information in visualization and graphic design. The substantial variability
in the categories and structures of labeled objects leads to diverse label layouts. Recent single-model learning-based solutions in
label placement struggle to capture fine-grained differences between these layouts, which in turn limits their performance. In addition,
although human designers often consult previous works to gain design insights, existing label layouts typically serve merely as training
data, limiting the extent to which embedded design knowledge can be exploited. To address these challenges, we propose a mixture of
cluster-guided experts (MoCE) solution for label placement. In this design, multiple experts jointly refine layout features, with each expert
responsible for a specific cluster of layouts. A cluster-based gating function assigns input samples to experts based on representation
clustering. We implement this idea through the Label Placement Cluster-guided Experts (LPCE) model, in which a MoCE layer
integrates multiple feed-forward networks (FFNs), with each expert composed of a pair of FFNs. Furthermore, we introduce a retrieval
augmentation strategy into LPCE, which retrieves and encodes reference layouts for each input sample to enrich its representations.
Extensive experiments demonstrate that LPCE achieves superior performance in label placement, both quantitatively and qualitatively,
surpassing a range of state-of-the-art baselines. Our algorithm is available at https://github.com/PingshunZhang/LPCE.

Index Terms—Label placement, Mixture of experts, Retrieval augmentation

1 INTRODUCTION

Labels are widely used in graphic design [4] and information visual-
ization [38] to provide auxiliary information for a scene. A label is a
brief text annotation connected to its target element by a leader line.
The placement of labels, i.e., determining the label layout, is crucial
for users’ perception of the scene. Therefore, extensive research has
explored the automatic layout generation. This ranges from specialized
explanations, such as annotations in medical illustrations [33], to visual-
ization guidance, such as locating objects in virtual environments [60].

Label placement has typically been formulated as an optimization
problem in previous methods, given its NP-hard nature [12]. These
methods design cost functions with specific constraints tailored to
scenarios and placement rules. Then, algorithms such as greedy or
dynamic programming are employed to search for the optimal solution
among possible label layouts [5, 34, 43, 61].

The tremendous success of deep learning in various fields has spurred
recent research to focus on learning-based methods [7,11,46]. Nonethe-
less, the progress in addressing two critical challenges remains limited.
First, the discrimination of label layout characteristics requires refine-
ment. Target objects exhibit a wide variety of categories and structures,
and their label layouts are highly diverse. For learning-based methods,
training a single model restricts refinement in capturing differences
between layouts, thus hindering performance improvement. Instead
of using a single model, employing a separate model to generate each
layout would further enhance performance. However, using excessively
fine-grained models is impractical. Second, the exploration of label
layout data remains insufficient. Designers often refer to existing works
within creative workflows to absorb useful insights. However, most
current methods utilize existing label layouts only as training samples;
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Fig. 1: Conceptual illustration of LPCE: integrating mixture of cluster-
guided experts with retrieval augmentation.

even approaches like that of Vollick et al. [57], which specify layout
styles from a single example, still offer limited design insights and
struggle to address the diversity of label layouts.

In this work, we address both challenges with novel contributions.
First, we propose a mixture of cluster-guided experts (MoCE) for label
placement (Fig. 1). In this solution, multiple experts are employed to
learn features for label layouts, with each expert responsible for a group
of layouts. This design enables the capture of more discriminative
layout features. A MoCE layer is constructed by integrating multiple
feed-forward networks (FFNs) in a graph Transformer block, with each
expert consisting of a pair of FFNs. We then design a cluster-based
gating function that assigns input samples to the appropriate expert via
clustering. Finally, a Label Placement Cluster-guided Experts (LPCE)
model is formed to predict label layouts.

Second, to better leverage existing layouts, we introduce a retrieval
augmentation (RA) strategy into LPCE. For an input sample, reference
label layouts are retrieved from a given dataset via nearest neighbor
search. These layouts are encoded and then fused with the features
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of the input sample. The injection of reference layouts improves the
quality of label placement.

In summary, our main contributions include:
• We propose a mixture of cluster-guided experts architecture for

label placement. Fine-grained characteristics of diverse label
layouts are captured by multiple experts, each responsible for a
group of layouts. The cluster-based gating function assigns input
samples to their matching experts by clustering them.

• We develop a novel Label Placement Cluster-guided Expert
model, which we believe to be the first mixture-of-experts (MoE)-
based solution for label placement. Multiple FFNs form a MoCE
layer, in which a pair of FFNs acts as an expert.

• We present a retrieval augmentation strategy, which injects fea-
tures from reference layouts into label placement. This approach
partially emulates the common practice of human designers draw-
ing inspiration from previous works.

• Thorough experimental results show that LPCE surpasses various
state-of-the-art methods in label placement, achieving superior
performance both quantitatively and qualitatively.

2 RELATED WORK

2.1 Label Placement
Traditional rule-based methods often treat label placement as an opti-
mization problem, designing cost functions based on specific require-
ments of different scenarios. Boundary labeling is popular due to its
high readability [2,35,37,45,55,62]. It places labels along a predefined
boundary around target elements, with shapes such as rectangles [4,31],
object contours [14, 41], and circles [60, 67]. When the space for labels
is limited, some studies adopt internal labeling, i.e., placing labels
inside the regions of target elements, thus avoiding occlusion of other
elements [13,18,33,34,43,50]. Additionally, some studies use a mixed
strategy of internal and boundary labeling to explore more layout op-
tions [15, 19, 42]. These works provide valuable experience for label
layout generation. With the significant developments of deep learning
in various domains, several studies have incorporated learning tech-
niques into label placement [11, 23, 38]. SmartOverlays (SO) [23] uses
saliency maps to guide label placement in videos, reducing occlusion
of visually important regions. Semantic-Aware Labeling (SAL) [26]
incorporates both saliency and high-level semantic cues via a learned
guidance map to optimize label placement in street-view scenes. How-
ever, learning-based methods primarily use a single model, which limits
their ability to capture the differences between various label layouts.
Moreover, layout samples are used solely as training data, restricting
the design insights that can be extracted.

A recent study, LPGT [46], formulates label placement as a node pre-
diction problem and iteratively learns label positions using a sequence
of graph Transformer modules. We adopt this formalization, but by
designing cluster-guided experts, we directly predict label positions,
avoiding iterative estimation and achieving superior performance.

2.2 Mixture of Experts
The core idea behind MoE is to divide the model into multiple special-
ized sub-models, known as experts, where each expert specializes in a
specific part of the problem space [25, 28]. A gating function dynam-
ically selects a subset of these experts for each input. Based on the
design of gating functions, MoE can be broadly classified into two cat-
egories: dense MoE and sparse MoE. Dense MoE activates all experts
during each iteration [39, 63]. Although it improves performance, this
approach also results in considerably increased computational overhead.
Consequently, with the rapid development of large language models
(LLMs), sparse MoE has gained more popularity. It activates only rele-
vant experts for each input. This selective activation renders sparse MoE
a powerful and flexible framework in diverse domains [16, 27, 49, 66].

MoE for GNNs Graph neural networks (GNNs) and graph Trans-
former models have excelled in a range of tasks involving graph struc-
tures [65]. For GNNs with MoE, early efforts combine GNNs from dif-
ferent domains to assemble knowledge, approximating a fixed-weight
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Fig. 2: Constituents of a label: text, label box, and anchor point.

MoE [1,54,59]. Recent advancements have integrated MoE to enhance
graph analysis by using GNN or fully connected layers as experts,
realizing adaptive aggregation [58] and domain-specific experts [30].
GMoE [58] allows each node to select experts suited to diverse graph
structures and receptive fields. In contrast, we integrate multiple FFNs
in the MoCE layer, where each expert consists of a pair of FFNs dedi-
cated to refining node and edge representations.

2.3 Retrieval-Augmented Generation
Retrieval augmentation leverages either external memory [53] or the
training data itself [24] to enhance generative models without expand-
ing network parameters. In fields such as natural language processing
and computer vision, this approach dynamically fetches relevant in-
formation using retrieval mechanisms, e.g., k-nearest neighbors from
pre-calculated embeddings, to inform the generation process [3, 6, 21].
Recent advances in retrieval-augmented generation for visualization
have also shown promise. For instance, FinFlier [22] and Data Play-
wright [52] employ external memory-based retrieval to dynamically
fetch relevant contextual information, which is then seamlessly inte-
grated into the generation process to enhance the quality and relevance
of the generated content. Given the availability of the SWU-AMIL
dataset [46] for label placement, we opt to use the training data itself.

3 PRELIMINARIES

In this section, we follow [46] to provide the problem formulation and
review general GNN-based label placement.

3.1 Problem Formulation
A label consists of three essential constituents (Fig. 2):

• text: the short description of the target element,

• label box: a rectangular region enclosing the text, and

• anchor point: a representative position on the target element.
The label placement problem aims to position a given set of labels
within a graphic. Its input consists of a graphic/image I ∈ RH×W×3

and a label set L=
{(

ai ∈ R2,bi ∈ R2)}nl

i=1, where each label is rep-
resented by its anchor point ai = (xi,yi) and box size bi = (hi,wi),
and nl is the number of labels. Each label is initially placed at its
anchor. The objective is to compute the expected label displacements
D=

{
d̂i ∈ R2}nl

i=1, where d̂i is the estimated displacement of the i-th
label from its anchor to the final position.

Graph Construction We construct a complete attributed graph
G = (V,E) to represent the labels and their interactions, where each
label is associated with a node. V=

{(
zg

i ∈ R4,zv
i ∈ Rdv

)}nl

i=1 denotes
the set of nodes with attributes. The node attribute consists of the
geometric component zg

i = [ai,bi] and the visual component zv
i . To

construct the visual attribute, we first extract convolutional feature maps
F ∈ Rh×w×dv from the entire image I using a convolutional neural net-
work (CNN), where h and w denote the spatial size of convolutional
features, and dv denotes the dimension. We then perform bilinear inter-
polation and max pooling on the image patch features corresponding
to the node. Analogously, E =

{(
eg

i j ∈ R6,ev
i j ∈ Rdv

)}
is the set of

edges with attributes. The geometric attribute eg
i j =

[
ai −a j,bi,b j

]
of

each edge (i, j) includes the distance vector between its two associated
nodes and the sizes of corresponding boxes. The visual attribute ev

i j is
extracted from the image region between the two nodes by sampling
pixel points and applying average pooling to their visual features.
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Fig. 3: Overview of the LPCE architecture. First, the encoder initializes each node representation zi and edge representation ei j of the input graph
G. The RA module produces the augmented node representation za

i and edge representation ea
i j based on style features from reference samples.

Next, the MoCE module employs multiple cluster-guided experts to refine the features of diverse label layouts. Finally, the decoder predicts the
displacements D of the labels. The label layout is generated by combining the anchor positions and displacements of all labels. For clarity, some
edges are omitted in the graph G.

3.2 Graph Transformer Block
An off-the-shelf graph Transformer block is used to learn node and
edge representations [46]. We adjust its hyperparameters for LPCE.
The Transformer block contains a node block and an edge block. Both
blocks consist of a multi-head self-attention (MHSA) layer and an FFN:

z′i = MHSAz
(

zi,
{(

z j,ei j
)}

j∈Ni

)
+ zi

z′′i = FFNz (z′i
)
+ z′i

e′i j = MHSAe
(

ei j,z′′i ,z
′′
j ,
{(

e jk,z′′k
)}

( j,k)∈Ni j

)
+ ei j

e′′i j = FFNe (e′i j
)
+ e′i j

(1)

where zi and ei j denote the hidden representations of node i and edge
(i, j), respectively. Ni denotes the first-order neighbor node set of node
i, and Ni j denotes the neighbor edge set of edge (i, j). The neighbors
of an edge are defined as edges that share at least one associated node
with it. The FFN consists of two linear layers, with a ReLU activation
function applied between them. The difference between the two blocks
lies in their attention mechanism. In the node MHSA layer, a node-level
attention projects QKV vectors from each node representation, simulta-
neously conditioned on the edge representation between two nodes. In
the edge MHSA layer, an edge-level attention projects QKV vectors
from each edge representation and associated node representations,
then adds the QKV vectors of edges and nodes. Therefore, mutual
dependencies between node and edge representations are formed across
the two blocks.

4 METHODOLOGY

The proposed LPCE, as illustrated in Fig. 3, contains four modules: an
encoder, a MoCE module, an RA module, and a decoder.

• Encoder. The encoder integrates label information and image
features. It takes the graph G as input and fuses the geometric and
visual attributes of nodes and edges into initial representations.
This is achieved via linear projections applied to each node and
edge, defined as Ez :

(
zg

i ,z
v
i
)
7→ zi ∈ Rd and Ee :

(
eg

i j,e
v
i j

)
7→

ei j ∈ Rd , where d is the dimension of representations.

• RA Module. Reference label layouts are retrieved for each input
sample based on image similarity. The features of these reference
layouts are injected into the initial node and edge representations
of each sample. We describe the details in Sec. 4.1.

• MoCE Module. This module consists of nt standard Transformer
blocks (Eq. (1)) and nm ones equipped with the MoCE layer. The
standard blocks update the node and edge representations. The
MoCE layer is composed of multiple FFNs that further refine
the representations. Each expert consists of a pair of FFNs. The
gating function clusters input samples based on their graph repre-
sentations, guiding each sample to its matching expert according
to the clustering results. The details are described in Sec. 4.2.

• Decoder. The decoder takes the updated node representations as
input, and predicts the displacement d̂i of each node by an FC
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Kr
i=1 for each

input image I are retrieved based on visual similarity and encoded into
style features H. The features are injected into each node representation
zi and edge representation ei j of the input sample via cross-attention.

layer, D : zi 7→ d̂i. The label layout is determined by adding the
displacements to the anchor positions of all labels.

4.1 Retrieval Augmentation
To produce visually appealing label layouts, labels are typically re-
quired to be placed in designated regions. Various layout styles are thus
formed. Absorbing stylistic experience from existing layouts presents
a significant opportunity for promoting the quality of label placement.
Therefore, retrieval augmentation is introduced to enrich the initial node
and edge representations via reference layout information, as shown
in Fig. 4. First, reference layout samples are retrieved from a given
dataset. Then, a reference feature extractor encodes these samples into
style features. Finally, the reference features are injected into the node
and edge representations, respectively, by a cross-attention mechanism.

4.1.1 Reference Retrieval
Given the input image I as the query, we retrieve a set of reference
layout samples from a label placement dataset. These samples are
represented by their images and raw label information

{(
I′i,L′

i
)}Kr

i=1,
where Kr denotes the number of samples. We adopt DreamSim [17]
to measure image similarity between the query and candidate sam-
ples, as it aligns well with human perception of semantic similarity.
Since images with similar semantic content tend to exhibit similar label
layouts [5], using a perceptual metric helps improve the relevance of
retrieved layouts. Compared to traditional metrics that focus primar-
ily on low-level features, DreamSim captures higher-level semantics,
which better supports the retrieval augmentation. Top-Kr samples are
thus retrieved based on image similarity between I and I′. To prevent
ground-truth leakage, all samples from the training set serve as the
retrieval source for both training and testing, with the exception of the
query itself during training.

4.1.2 Feature Encoding
We define five layout styles based on the rectangular and contour bound-
ary labeling [5]. For rectangular labeling, depending on the number of
sides involved, we distinguish 1-sided, 2-sided, 3-sided, and 4-sided
layouts. A 1-sided layout is typically used when there are only a few



(a) 1-sided Style (b) 2-sided Style (c) 3-sided Style

(d) 4-sided Style (e) Contour Style

Fig. 5: Five label layout styles of an illustration. (a)-(e): 1-sided, 2-sided,
3-sided, 4-sided, and contour styles.

labels. The specific side for label placement depends on the available
space. In a 2-sided layout, the sides are either opposite or adjacent.
When the number of labels increases or there is sufficient space, 3-sided
and 4-sided layouts are favored. This allows labels to be placed closer
to their target elements, thus reaching a balance between aesthetics and
readability. Contour labeling creates a layout that roughly matches the
shape of the target object, achieving label placement that blends in with
the object. Five corresponding label layout styles are thus developed
based on the above layouts, as shown in Fig. 5.

To embed reference layouts into style features, we design a reference
feature extractor based on style classification. It takes the graph G′ of a
reference sample (I′,L′) as input, and predicts its style. The extractor,
as shown in Fig. 6, consists of four components: encoder, Transformer
module, feature fusion module, and predictor. 1) The encoder follows
the same architecture as the one in Sec. 4, and also generates the
initial node and edge representations. 2) Then, the representations are
updated by ns standard Transformer blocks (Eq. (1)). 3) The updated
node representations are aggregated into the graph-level representation
hG′ ∈ Rd using Transformer-based adaptive pooling [24]. While visual
features have been incorporated into both node and edge representations,
they are limited to local patch features and do not capture global image
features. To capture the image-level features, the extracted feature maps
F′ of the image I′ are condensed into a feature vector hI′ ∈ Rd using
adaptive average pooling and an FC layer. Both feature types (hG′ ,hI′)
are taken into account for identifying the layout style. We introduce
a fusion function, defined as F : [hG′ ,hI′ ] 7→ h ∈ Rd , to combine the
features. It is implemented by an MLP. 4) Finally, by taking the fused
features h as input, the predictor, defined as P : h 7→ ŷ ∈ R5, estimates
the probability distribution ŷ of the input sample across the five styles.
This is implemented by an FC layer.

In addition, we adopt a focal loss to guide the extractor training:

L=−αc(1− ŷc)
γ log(ŷc) (2)

where c ∈ {1,2,3,4,5} denotes the index of the ground-truth category
of the input sample, ŷc is the c-th entry of ŷ, and the focusing parameter
γ is set to 2. The class balancing factor αc is computed based on the
normalized inverse frequency of each class:

αc =
1− nc

N

∑
5
c=1

(
1− nc

N
) (3)

where nc denotes the number of samples in the c-th class, and N is the
total number of training samples. We pre-train the feature extractor and
remove its predictor. The fused features are treated as style features,
thereby avoiding the issue of varying numbers of labels across different
samples. Each sample (I′,L′) is embedded into a feature vector h, and
these features are then stacked into a matrix H ∈ RKr×d .
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Fig. 6: Architecture of the reference feature extractor. First, given the
graph G′ of a reference sample (I′,L′) as input, the encoder generates
the initial node and edge representations. Next, the representations are
updated by the Transformer module. Then, the feature fusion module
integrates the graph-level representation hG′ and the image-level feature
hI′ into the style feature h.

4.1.3 Feature Injection
Both node and edge representations are augmented by injecting the
reference feature H. Taking the node representation zi as an example,
the cross-attended feature between zi and H is computed to generate
the augmented representation za

i ∈ Rd :

za
i = H⊤ · softmax

(
H · zi√

d

)
+ zi (4)

where a residual connection is applied after the attention block. In
the cross-attention mechanism, the node representation acts as the
query vector, and the reference feature serves as both the key and value
vectors. Analogously, the augmented representation ea

i j is obtained for
each edge representation ei j . This design allows the placement of given
labels to absorb style features from the reference layouts.

4.2 Mixture of Cluster-guided Experts
Multiple experts are employed to learn fine-grained characteristics
for various label layouts, each of which is responsible for a group of
layouts. The gating function routes input samples to their matching
experts by clustering their graph representations.

4.2.1 MoCE Layer
We design a MoCE layer to replace the FFNs in both the node and
edge blocks. Specifically, it consists of two sub-layers: a node MoCE
sub-layer and an edge MoCE sub-layer, each corresponding to the
FFN originally used in the respective block. The node sub-layer inte-
grates Ke + 2 FFNs, as shown in Fig. 7. Ke FFNs

{
FFNz

k

}Ke

k=1 serve
as experts, each dedicated to learning features for a group of samples,
thus generating more distinctive node representations. This enables
finer-grained characterization of each sample. The remaining two FFNs
placed before (FFNz

a) and after (FFNz
b) the expert FFNs provide a

smoothing buffer around them, damping gradient spikes during sparse
activation. This structure prevents abrupt output shifts, stabilizing
MoCE training [68]. The edge sub-layer also consists of Ke +2 FFNs,{

FFNe
a,
{

FFNe
k
}Ke

k=1 ,FFNe
b

}
, with roles similar to those in the node

sub-layer. Expert activation is shared across the two sub-layers: each
expert is composed of a pair of FFNs,

(
FFNz

k,FFNe
k
)
, and the activation

is determined from the node side.

4.2.2 Cluster-based Gating
We design a cluster-based gating function to determine which expert
the input sample (I,L) should be assigned to. Specifically, we first
extract the graph representation of the sample for clustering purposes.
The input node representations to the experts, obtained from FFNz

a
(the FFN before the expert FFNs), are aggregated using global additive
pooling and then passed through a nonlinear transformation to produce
the graph representation hG ∈ Rdh :

hG = MLP
(
GAP

({
FFNz

a
(
z′i
)}nl

i=1

))
(5)

where z′i denotes the output representation of the node MHSA layer,
and GAP denotes the global additive pooling operation. The nonlinear
transformation is implemented by a multi-layer perceptron (MLP) with
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Fig. 7: Architecture of the MoCE layer. It comprises a node and an edge
sub-layer. Each expert consists of two FFNs

(
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k
)
—one from

each sub-layer—responsible for refining node and edge representations.
Two FFNs, placed before (FFNa) and after (FFNb) the expert FFNs, are
used to ensure training stability. Expert activation is determined from
the node sub-layer via the cluster-based gating function, which assigns
each input to a specific expert by clustering its graph representation hG
and shares the assignment across both sub-layers. In this example, the
second expert

(
FFNz

2,FFNe
2
)

is activated. For clarity, inactive experts in
the edge sub-layer and their one-hot entries are omitted.

two hidden layers. Before generating the clustering feature (i.e., the
graph representation), the learning of node and edge representations
undergoes the following process. The geometric and visual attributes
of nodes and edges of the input sample are separately fused into ini-
tial node and edge representations in the encoder. Subsequently, in
the RA Module, the style features of retrieved reference layouts are
injected into the initial node and edge representations. Finally, in the
MoCE Module, standard Transformer blocks update the node and edge
representations. Therefore, the resulting clustering feature effectively
incorporates geometric features, visual features, and retrieved layout
features.

Next, we compute the assignment probability p̂ of the input sample
to the experts. To achieve this, we introduce Ke learnable parame-
ters

{
ck ∈ Rdh

}Ke

k=1 as centroids for the Ke clusters, respectively. The
centroids are initialized by K-means clustering. The similarity be-
tween the sample’s representation and each centroid is computed to
obtain the assignment probability. A hard Gumbel-Softmax operation is
then applied, converting the probability into a hard decision, assigning
the sample to the cluster with the highest probability, thus activating
the corresponding expert. This ensures precise expert selection while
maintaining differentiability. Due to the heavy-tailed nature of the
Cauchy distribution [40], it is effective at handling noise and outliers,
which helps maintain training stability. Therefore, we use the Cauchy
distribution as a kernel to measure the similarity between the graph
representation hG and the k-th centroid ck:

p̂k =

(
1+∥hG− ck∥2)−1

∑
Ke
k′=1

(
1+∥hG− ck′∥2

)−1 (6)

where p̂k is the k-th element of p̂, indicating the probability that the
input sample belongs to the k-th cluster. Regarding the training stability
of the gating function, we further adopt a small batch size to allow
more frequent updates of the cluster centroids during the training of
LPCE. This helps mitigate extreme cases in the clustering process and

reduces the model’s sensitivity to the random initialization of centroids.
Finally, the node representations output from the MHSA layer are

refined by the MoCE layer:

z′′i = FFNz
b
(
FFNz

k∗
(
FFNz

a
(
z′i
)))

+ z′i (7)

where k∗ denotes the index of the activated expert for the input sam-
ple. The edge representations are refined in a similar way, e′′i j =

FFNe
b

(
FFNe

k∗

(
FFNe

a

(
e′i j

)))
+ e′i j.

The MoCE layer achieves sparsity through the cluster-based gating
function, similar to the commonly used sparse gating mechanism [51].
This mechanism calculates a weighted sum of outputs from the top-
k experts, with the activation of experts determined by the softmax
operation. The proposed cluster-based gating is equivalent to activating
the top-1 expert. Additionally, the MoCE layer avoids a load balancing
issue common in sparsely-gated MoE models. The issue refers to
the uneven distribution of workload across experts, with some being
frequently utilized and others seldom or never engaged. To address this,
a balancing loss is typically introduced to promote an even distribution
of tokens across experts within each batch [9]. In contrast, the proposed
gating function directs each sample to its matching expert by clustering
graph representations, ensuring all experts are effectively trained.

5 EXPERIMENTS

We evaluate the performance of our LPCE by comparing it with various
methods for label placement. Additionally, we conduct ablation studies
and a user study for further evaluation and analysis. The findings from
these experiments may open potential pathways for future research and
optimization of our method. The implementation details of LPCE are
provided in the supplementary material.

5.1 Evaluation Benchmarks & Metrics
The experiments are conducted on a label placement dataset, SWU-
AMIL [46]. This dataset contains 869 label layouts across 11 categories.
All layouts are collected from commercial illustrations. These layouts
are split into 695/174 samples for training and testing, respectively.
Based on the five layout styles defined in Sec. 4.1, we add a style
annotation to each sample. The numbers of the five classes of samples
in the training and testing splits are {88, 87, 386, 107, 27} and {18,
22, 102, 19, 13}, respectively. Additionally, by applying slight local
perturbations to the anchor coordinates, we augment the number of
training samples to 6,950.

We use the following four metrics to evaluate label placement quality:
1) Probability of Correct Keypoints (PCK@τ) [46,64], where τ = 0.05
is a threshold tolerance factor; 2) Intersection over Union (IoU) be-
tween predicted and ground-truth label positions, calculated based on
their respective boxes [48]; 3) Overlap between labels, computed as
the average IoU over all pairs of label boxes [36]; 4) Label visibility
(LV), measured by the proportion of labels not occluded by any oth-
ers [29]. Higher PCK, IoU, and LV values indicate better performance,
while lower Overlap also reflects better results. Calculations of these
metrics are explained in the supplementary material. For all models,
the mean values and standard deviations of these metrics over 5 runs
are reported. To evaluate model efficiency, we profile the number of
model parameters and the time required to generate a label layout. We
report the number of model parameters without the feature backbone,
as the backbone remains consistent across all models. We calculate the
mean generation time across all test samples.

5.2 Evaluation Results
LPCE is compared with four groups of methods: (1) GNNs: GCN2 [10],
GATv2 [8], GPS [47], and ASC [20]; (2) MoE for GNNs: GMoE [58];
(3) Learning-based label placement methods: LPGT [46]; (4) Rule-
driven label placement methods: SO [23], and SAL [26]. The experi-
mental settings are listed below:

• For fair comparison with GNN models, we maintain the overall
architecture of LPCE and replace the Transformer block with the
GNN layer from each model. Each expert is a GNN layer. To
avoid the over-smoothing problem, we apply residual connections



Table 1: Comparison of label layout quality (PCK@0.05 (%)) and efficiency on the SWU-AMIL dataset. “Time” denotes the average generation time
of a label layout. “Params” refers to the number of parameters in a model, excluding the feature backbone. PCK results are averaged over 5 restarts
(LPGT results are taken from [46]). Time statistics are calculated over all test samples. Numbers in bold indicate the best performance.

Model ac d.wash d.cabi. fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) Params

GCN2rm [10] 43.21 63.74 38.00 68.83 67.13 45.00 63.77 48.27 24.29 89.72 21.08 57.64 ± 0.37 9.64 1.9M
GATv2rm [8] 42.26 62.90 40.67 70.84 68.60 52.50 65.62 48.99 26.00 88.61 18.80 58.33 ± 0.65 12.63 4.1M

GPSrm [47] 44.43 76.37 40.67 71.11 67.02 60.00 64.30 48.40 26.00 88.06 19.26 58.88 ± 0.59 11.24 5.9M
ASCrm [20] 42.82 68.22 40.67 70.14 66.73 62.50 61.99 48.27 26.57 89.39 22.95 58.04 ± 0.34 10.61 2.4M

GMoEr [58] 42.18 57.93 38.00 70.17 65.75 55.00 64.20 47.82 32.57 89.61 23.85 57.98 ± 0.70 15.35 3.7M

LPGT [46] 42.05 76.81 46.67 72.67 73.51 87.50 57.30 50.25 24.29 85.14 34.57 59.27 18.46 11.4M
LPGT∗ [46] 45.11 77.00 48.00 74.45 73.55 77.50 59.43 48.04 31.72 84.83 30.12 60.26 ± 0.32 22.25 11.4M

LPCE 51.68 83.44 44.67 74.21 73.31 70.00 65.66 49.99 21.43 88.89 25.98 62.65 ± 0.31 14.49 6.9M

Fig. 8: Visualization results on the SWU-AMIL dataset. Solid boxes represent ground-truth label positions, while dashed boxes indicate predicted
ones. Different colors distinguish labels, and label texts are omitted in predictions for clarity.

Table 2: Comparison of label layout quality (IoU, LV, Overlap (%)) on the
SWU-AMIL dataset.

Model IoU ↑ LV ↑ Overlap ↓
GCN2rm [10] 29.96 ± 0.34 85.94 ± 0.30 0.40 ± 0.02
GATv2rm [8] 30.06 ± 0.27 86.38 ± 0.98 0.40 ± 0.04

GPSrm [47] 28.85 ± 0.41 85.56 ± 0.80 0.46 ± 0.06
ASCrm [20] 30.27 ± 0.51 85.87 ± 0.46 0.41 ± 0.04

GMoEr [58] 30.16 ± 0.50 86.18 ± 0.51 0.41 ± 0.04

LPGT∗ [46] 30.15 ± 0.87 87.74 ± 0.54 0.40 ± 0.11

LPCE 31.95 ± 0.43 89.39 ± 0.52 0.30 ± 0.03

after each GNN layer. For models implemented based on attention
mechanisms (GATv2) or Transformer architectures (GPS), we set
the number of heads in their multi-head attention to 16, which is

consistent with LPCE. Additionally, GCN layers [32] are utilized
as the message passing layers in both GPS and ASC. These GNN
models are denoted by their names with the subscript rm.

• Following the standard configuration of GMoE, we define each
expert as a GCN layer. Additionally, we incorporate a retrieval
augmentation module, in which the reference feature extractor is
implemented based on GCN layers. This new model is denoted
as GMoEr.

• The publicly reported results of LPGT were obtained on the train-
ing set of SWU-AMIL. We retrain it on the augmented training
data, and denote the model as LPGT∗.

Quantitative Results From the quantitative results illustrated
in Tabs. 1 and 2, LPCE consistently outperforms the compared models,
achieving the highest PCK (62.65%), IoU (31.95%), and LV (89.39%),
as well as the lowest Overlap (0.30%). These results demonstrate
LPCE’s superiority in balancing spatial precision and visual clarity



Table 3: Ablation studies of the RA and MoCE modules of LPCE on the SWU-AMIL dataset.

Model ac d.wash d.cabi. fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) Params

Baseline 45.51 82.44 44.67 73.62 73.36 47.50 61.01 48.29 17.14 87.89 30.89 60.35 ± 0.81 12.98 5.5M
Baseliner 49.03 81.49 44.00 74.19 70.54 70.00 61.88 49.81 15.72 87.33 25.68 61.16 ± 0.61 13.81 6.2M
Baselinem 48.97 83.81 45.33 74.14 75.00 55.00 62.56 48.24 20.00 87.11 30.72 61.57 ± 0.35 13.77 6.2M
Baselinerm 51.68 83.44 44.67 74.21 73.31 70.00 65.66 49.99 21.43 88.89 25.98 62.65 ± 0.31 14.49 6.9M

Table 4: Ablation studies of the RA and MoCE modules of the comparison GNN models on the SWU-AMIL dataset.

Model ac d.wash d.cabi. fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) Params

GCN2 40.76 58.49 34.00 66.97 63.33 30.00 57.70 44.45 29.71 81.39 20.14 54.25 ± 0.48 6.38 1.1M
GCN2r 38.43 59.65 34.00 66.47 62.30 25.00 60.82 44.36 25.43 84.00 21.93 54.27 ± 0.43 9.08 1.5M
GCN2m 41.69 58.96 33.33 67.60 61.62 42.50 59.52 46.77 19.14 86.50 20.69 55.44 ± 0.44 9.05 1.6M
GCN2rm 43.21 63.74 38.00 68.83 67.13 45.00 63.77 48.27 24.29 89.72 21.08 57.64 ± 0.37 9.64 1.9M

GATv2 39.74 57.65 36.67 66.95 60.30 32.50 60.39 45.05 21.14 85.11 23.77 54.79 ± 0.56 11.03 2.5M
GATv2r 42.25 54.38 34.00 66.04 61.54 47.50 63.49 46.26 33.71 84.94 24.36 55.84 ± 0.17 11.75 3.2M
GATv2m 41.19 62.95 36.00 70.11 71.21 32.50 63.02 46.54 34.57 88.36 19.80 57.30 ± 0.28 11.76 3.5M
GATv2rm 42.26 62.90 40.67 70.84 68.60 52.50 65.62 48.99 26.00 88.61 18.80 58.33 ± 0.65 12.63 4.1M

GPS 31.91 65.73 40.00 50.22 60.46 37.50 47.93 33.53 29.14 7.53 15.14 39.34 ± 3.49 9.12 3.1M
GPSr 38.17 55.21 37.33 66.04 63.22 50.00 62.44 46.85 20.29 78.22 21.30 54.23 ± 1.14 9.66 3.5M
GPSm 40.17 74.49 44.67 67.50 67.98 65.00 62.97 47.16 20.57 83.81 17.10 56.13 ± 0.81 10.26 5.6M
GPSrm 44.43 76.37 40.67 71.11 67.02 60.00 64.30 48.40 26.00 88.06 19.26 58.88 ± 0.59 11.24 5.9M

ASC 40.48 51.40 36.67 66.81 61.05 47.50 60.27 45.09 24.57 77.78 22.97 54.34 ± 0.87 8.76 1.4M
ASCr 41.12 55.84 33.33 68.95 61.86 60.00 59.95 46.55 30.00 83.61 24.69 55.99 ± 0.41 10.05 1.7M
ASCm 42.88 62.87 36.67 69.99 66.22 60.00 59.01 46.83 21.71 88.83 22.45 57.06 ± 0.46 10.00 2.1M
ASCrm 42.82 68.22 40.67 70.14 66.73 62.50 61.99 48.27 26.57 89.39 22.95 58.04 ± 0.34 10.61 2.4M

GMoE 42.93 61.06 35.33 67.32 66.85 47.50 61.74 45.57 32.29 91.56 22.19 56.71 ± 0.31 14.34 3.0M
GMoEr 42.18 57.93 38.00 70.17 65.75 55.00 64.20 47.82 32.57 89.61 23.85 57.98 ± 0.70 15.35 3.7M

Table 5: Ablation studies of the architecture of the expert on the SWU-AMIL dataset.

Model ac d.wash d.cabi. fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) Params

Trans. 47.53 86.34 41.33 72.63 70.53 70.00 62.67 49.61 20.00 88.50 26.86 60.75 ± 0.31 16.62 10.1M
FC 50.30 83.11 46.00 73.00 68.60 72.50 62.35 49.24 29.14 85.50 26.12 61.12 ± 0.18 14.28 6.4M
FFN 51.68 83.44 44.67 74.21 73.31 70.00 65.66 49.99 21.43 88.89 25.98 62.65 ± 0.31 14.49 6.9M

across multiple layout quality metrics. In addition, it achieves top-2
PCK values in multiple categories, including air conditioner (51.68%),
dishwasher (83.44%), fridge (74.21%), panel (65.66%), and remote
(49.99%), which collectively account for 80.55% of the training sam-
ples and 79.89% of the test samples, demonstrating better adaptability
and robustness. Moreover, LPCE maintains a competitive inference
speed (14.49 ms) compared to other advanced methods and has a rela-
tively smaller number of parameters (6.9M). The augmented training
data has improved PCK for LPGT by 0.99% (from 59.27% to 60.26%),
enabling LPGT∗ to achieve the closest performance to LPCE among
all methods compared. However, LPGT∗ has considerably more pa-
rameters (11.4M) and slower inference speed (22.25 ms), making it
less practical than LPCE. Although GMoEr achieves relatively high
performance in certain categories (e.g., 32.57% PCK on washer), its av-
erage result still lags behind LPCE by 4.67%. Furthermore, while GNN
models (GCN2rm, GATv2rm, GPSrm, and ASCrm) exhibit relatively
lower inference latency and smaller model sizes, they show weaker
performance. The performance of SO and SAL is reported as unsat-
isfactory in [46], with PCK values of 7.14% and 3.52%, respectively.
Overall, LPCE not only achieves superior label placement accuracy
but also ensures an effective trade-off between model complexity and
computational efficiency, making it advantageous for real-world label
placement applications.

Qualitative Results The predicted label layouts of several samples
are visualized in Fig. 8. Compared to GCN2rm, GPSrm, GMoEr, and
LPGT∗, LPCE generates more visually appealing layouts across differ-
ent categories and numbers of labels. Some label positions predicted
by the comparison methods are inappropriate, resulting in occlusion of
target elements. In particular, all models generate decent label layouts
for the water heater sample (last row). However, for the oven sample

(third row), all models’ predicted layouts exhibit label overlap on a
vertically oriented label. We believe the likely reason is that vertically
oriented labels were rarely encountered during training, leading to poor
placement performance across all models for this type of label. To
address this issue, we plan to incorporate prior knowledge of label
orientation (horizontal or vertical) as conditional input in future studies.

5.3 Ablation Study

5.3.1 Key Components

We conduct ablation studies to shed light on the impact of RA and
MoCE. We implement a baseline model by removing the RA module
and replacing the MoCE-Transformer block with the standard one. The
experiments are conducted by incorporating each of these two key
designs into the baseline model individually, as shown in Tab. 3. The
baseline model achieves an average placement accuracy of 60.35%.
Integrating only the RA module (Baseliner) improves the performance
to 61.16%, indicating that it contributes positively to the overall per-
formance. Similarly, introducing solely the MoCE module (Baselinem)
also enhances the baseline performance, reaching 61.57%. Notably, the
combination of RA and MoCE (Baselinerm, i.e., LPCE) achieves the
highest accuracy of 62.65%, clearly surpassing that of each individual
module. This result underscores the complementary nature of RA and
MoCE, as their joint use leads to superior performance compared to
using each module independently.

Furthermore, Tab. 4 highlights the flexibility and effectiveness of RA
and MoCE when applied to other GNN models. For each model, the
baseline is denoted by its name. When separately added to the baseline,
the two modules produce variants denoted by the subscripts r and m,
respectively. Applying both modules to GCN2 improves the average
accuracy from 54.25% to 57.64%, while in GATv2, the performance



Table 6: Ablation studies of the arrangement of the MoCE module on the SWU-AMIL dataset.

Model ac d.wash d.cabi. fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) Params

T-T-T 49.03 81.49 44.00 74.19 70.54 70.00 61.88 49.81 15.72 87.33 25.68 61.16 ± 0.61 13.81 6.2M

M-T-T 46.79 83.18 46.67 73.73 70.89 62.50 61.48 47.35 22.86 91.28 22.39 60.40 ± 0.67 14.69 6.9M
T-M-T 45.29 83.31 46.67 72.02 71.98 57.50 60.17 49.92 24.29 92.22 24.65 59.91 ± 0.52 14.59 6.9M
T-T-M 51.68 83.44 44.67 74.21 73.31 70.00 65.66 49.99 21.43 88.89 25.98 62.65 ± 0.31 14.49 6.9M

M-M-T 46.76 83.11 44.67 72.94 72.14 72.50 62.21 48.67 21.43 89.33 21.56 60.29 ± 0.59 15.07 7.6M
M-T-M 49.17 83.63 42.67 74.21 70.49 62.50 61.93 50.24 22.86 88.50 21.75 61.16 ± 0.33 15.25 7.6M
T-M-M 49.55 84.09 46.67 72.67 71.57 67.50 61.90 51.34 24.29 89.17 23.90 61.21 ± 0.33 15.27 7.6M

M-M-M 45.71 82.20 44.00 72.85 66.38 67.50 62.19 51.21 23.43 88.83 22.21 60.08 ± 0.64 16.25 8.3M

Table 7: Ablation studies of the gating function on the SWU-AMIL dataset.

Model ac d.wash d.cabi. fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) Params

Softmax (w/o balance) 47.38 82.40 42.00 73.45 71.90 60.00 62.72 50.87 23.43 88.33 25.18 60.96 ± 0.14 13.91 6.7M
Softmax (with balance) 47.58 83.11 45.33 73.37 72.40 70.00 63.63 50.85 24.86 89.22 24.13 61.25 ± 0.42 14.04 6.7M

Cluster 51.68 83.44 44.67 74.21 73.31 70.00 65.66 49.99 21.43 88.89 25.98 62.65 ± 0.31 14.49 6.9M

Fig. 9: Ablation studies of the number of reference samples.

increases from 54.79% to 58.33%. Similar trends can be observed in
GPS (39.34% to 58.88%) and ASC (54.34% to 58.04%). Applying
each module individually also results in performance gains across all
baseline models. Even in the case of GMoE, a strong baseline, the RA
module leads to a gain from 56.71% to 57.98%. The performance gains
introduced by MoCE underscore the concept’s effectiveness in [58],
namely using a GNN layer as an expert. These consistent improvements
across different architectures demonstrate that RA and MoCE are not
only effective in the proposed method but also serve as general-purpose
enhancements that can be readily integrated into a wide range of GNN
frameworks to boost label placement performance.

5.3.2 Number of References

To evaluate how the number of reference samples Kr affects label
layout quality, we train the baseline model of LPCE using the top-
Kr reference samples, where Kr ∈ {1,2,3,4}. As shown in Fig. 9,
the performance increases steadily from 60.98% at Kr = 1 to a peak
of 61.16% at Kr = 3, indicating that incorporating more reference
samples can enhance overall layout quality. Moreover, RA enhances
the performance even with a single reference sample compared to the
baseline (60.98% vs. 60.35%). However, further increasing the number
to 4 leads to a performance drop to 60.72%, likely due to the inclusion
of less relevant or noisy references. Based on this trend, we select
Kr = 3 as the default setting, which offers the best balance between
reference diversity and relevance.

5.3.3 MoCE Architecture

Number of Experts We conduct an ablation study to explore the
effect of the number of experts Ke on label placement quality, where
Ke ∈ {1,2, . . . ,8}. As illustrated in Fig. 10, using only one expert yields
a PCK of 61.16%, which essentially corresponds to the model without
MoCE, i.e., Baseliner. As the number of experts increases, performance

Fig. 10: Ablation studies of the number of experts.

initially improves, peaking at 62.65% when Ke = 4. However, further
increasing Ke beyond 4 leads to performance degradation, likely due
to over-fragmentation of learning capacity. These results suggest that
Ke = 4 is the optimal choice, which allows the model to capture fine-
grained characteristics of diverse label layouts more effectively.

Expert Architecture To evaluate the impact of expert architecture,
we compare three designs in which each expert is composed of a
pair of Transformer blocks, FC layers, or FFN layers. In all cases,
the gating function operates on the input node representations to the
experts for clustering and expert assignment. As shown in Tab. 5, using
FFNs as experts achieves the best performance, which corresponds to
the design in LPCE. In contrast, the FC-based expert design (which
uses the decoder’s FC layers as experts) yields a lower accuracy of
61.12%, though it is more lightweight in terms of parameters (6.4M)
and inference time (14.28 ms). The Transformer-based expert design,
while having the largest model size (10.1M) and slowest inference
(16.62 ms), performs the worst with a PCK of 60.75%, indicating
that additional adjustments are required for the attention mechanism
to optimize performance. These results demonstrate that the FFN-
based experts offer a strong balance between learning capacity and
computational efficiency.

MoCE Module Arrangement We conduct an ablation study to
investigate how the number and position of MoCE-Transformer blocks
affect model performance, as summarized Tab. 6. LPCE contains three
Transformer blocks, each of which can be either standard (denoted as
T) or equipped with the MoCE layer (denoted as M). Accordingly, each
configuration can be represented as a three-letter code indicating the
type of block used at each of the three positions. The baseline setup
T-T-T, which uses three standard Transformer blocks (nt = 3, nm = 0),
corresponds to the model without MoCE, i.e., Baseliner in Tab. 3. T-
T-M, the setting used in LPCE, achieves the best performance when
incorporating one MoCE-Transformer block (nt = 2, nm = 1), outper-



Fig. 11: User study results: quality scores with 95% confidence intervals.
Statistically significant differences between method pairs are marked
by solid blue brackets with associated p-values; red dashed brackets
indicate non-significant differences.

forming the other two alternatives (M-T-T 60.40% and T-M-T 59.91%,
respectively). When MoCE is used in two blocks (nt = 1, nm = 2),
T-M-M achieves the highest PCK of 61.21%, slightly outperforming
the baseline, while the other two configurations M-M-T and M-T-M
perform similarly or slightly worse. Finally, using MoCE in all three
blocks (M-M-M, i.e., nt = 0, nm = 3) results in a performance drop to
60.08%. In summary, these results demonstrate that placing MoCE-
Transformer blocks at deeper levels enables the model to capture high-
level and fine-grained features more effectively. However, overusing
or placing them at shallower levels may lead to diminishing returns or
even performance degradation.

MoCE Stability To validate the role of the two auxiliary FFNs [68]
placed before and after the expert FFNs in MoCE, we train a variant
with them removed, while keeping the rest of the LPCE architecture
unchanged. This removal leads to a significant performance drop, from
62.65 ± 0.31 to 59.79 ± 1.03. Moreover, the increased standard devia-
tion indicates higher training instability. These observations confirm
the effectiveness of the two additional FFNs in stabilizing training.

Gating Function We compare two softmax-based gating variants,
with and without a balancing loss, against our cluster-based gating, as
shown in Tab. 7. The softmax-based gating function replaces the MLP
in Eq. (5) with an FC layer that linearly predicts a 4-dimensional vector.
A hard Gumbel-Softmax operation is then applied to convert this vector
into a one-hot representation, thereby assigning the input sample to
the activated expert. While this design is straightforward, it achieves a
lower PCK of 60.96%, and suffers from imbalanced expert usage during
training. To address this load imbalance issue, we further introduce
the balancing loss. For more details, please refer to [9]. This variant
encourages more uniform expert activation. As a result, it improves the
performance to 61.25%, but still lags behind the cluster-based gating.

5.4 User Study
We conducted a user study to compare user preferences across different
methods (GCN2rm, GPSrm, GMoEr, LPGT∗, and LPCE) using 11
diverse samples from the SWU-AMIL test set, with an average of 9.0
labels per sample (ranging from 4 to 15). Participants were presented
sequentially with pairs of label layouts for the same sample and asked to
choose their preferred one, using a psychophysical paired comparison
technique [56] and the two-alternative forced choice (2AFC) paradigm.
In cases where participants perceived no clear difference between the
two layouts, the pair was treated as a tie, and a preference was assigned
at random with equal probability. Each sample featured 10 layout pairs,
and to mitigate learning effects and fatigue, the sequence and side
placement of layouts were randomized. A total of 29 participants (16
males and 13 females, average age 21.9, ranging from 18 to 34) were
recruited through a university forum. Each participant evaluated 110
pairs, resulting in 108 scores per layout, with an average evaluation
duration of 9 minutes and 58 seconds. Preferences were quantified
into a count matrix C and analyzed for statistical significance using

Thurstone’s Law of Comparative Judgment [44, 56]. A two-tailed test
at α = 0.05 was used to assess the null hypothesis of no clear user
preference between the evaluated methods.

The results, shown in Fig. 11, indicate that LPCE achieves the high-
est quality score with a positive z-score, demonstrating performance
well above the average level in terms of user preference. LPGT∗ also
scores positively, ranking second, and is perceived as slightly better
than average. In contrast, GCN2rm, GPSrm, and GMoEr all receive
negative z-scores, indicating below-average perceived quality. There
is no statistically significant difference between GPSrm and GMoEr
(p = 0.448). These results confirm a statistically significant user pref-
erence for LPCE over all competing methods (p < 0.05).

5.5 Summary
The quantitative comparison results demonstrate that LPCE enhances
label placement quality by jointly refining layout features and incorpo-
rating prior experience from existing layouts. Moreover, it achieves a
good balance between computational efficiency and model complexity.
The qualitative results and the user study indicate that the layouts gener-
ated by LPCE are more aesthetically pleasing. Findings from ablation
studies, based on variations in the key designs of LPCE, confirm the
effectiveness of these designs in influencing overall performance.

6 DISCUSSION

Our method shows encouraging results but still has limitations. The
cluster-based gating function is not explicitly supervised with a separate
loss. Instead, it is optimized indirectly through end-to-end training
with the overall network objectives, which may limit the clustering
quality. Moreover, the current expert design does not incorporate
domain-specific knowledge such as layout styles, which has become
an emerging focus in recent MoE research. We plan to introduce
cluster-level supervision to enhance expert assignment and explore
style-aware or domain-specific experts to improve interpretability and
label placement quality.

LPCE’s scalability on larger datasets and in real-time scenarios
also requires attention. To address potential limitations in inference
speed and computational load, we propose two directions: 1) parameter
sharing and distillation, by sharing weights between the main and
RA-module encoders, reusing identical Transformer blocks across
modules, and applying knowledge distillation to train a compact student
model that mimics LPCE’s outputs while retaining accuracy; and 2)
graph sparsification, by pruning low-importance edges from the fully
connected graph to reduce computational overhead while preserving
essential structure.

Although our model is proposed for label placement, its core design
ideas have broader implications for the visualization research commu-
nity. First, the MoCE architecture offers a general strategy for handling
heterogeneous design scenarios. Instead of relying on a single model,
our use of specialized sub-models for different layout patterns can be
extended to tasks like adaptive chart annotation and infographic layout
generation. Second, the RA strategy provides a practical way to lever-
age prior design knowledge in data-driven systems. By incorporating
reference layouts, the model improves prediction quality based on past
examples. This approach could inform tools that adapt to user intent,
such as chart recommenders or intelligent authoring interfaces.

7 CONCLUSION

In this paper, we propose the idea of mixture of cluster-guided experts
for label placement, with multiple experts collaboratively refining the
characteristics of label layouts. Building on the idea, we develop
a Label Placement Cluster-guided Experts (LPCE) network to learn
optimal label positions. In LPCE, a MoCE layer is built by integrating
multiple FFNs in a graph Transformer block, where each expert consists
of a node FFN and an edge FFN. A cluster-based gating function is
designed to direct each input sample to an appropriate expert through
representation clustering. In addition, a retrieval augmentation strategy
is introduced into LPCE. The reference layouts are retrieved to promote
the quality of predicted layouts. Experimental results demonstrate the
effectiveness and efficiency of LPCE.
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[33] D. Kouřil, L. Čmolík, B. Kozlíková, H.-Y. Wu, G. Johnson, D. S. Goodsell,
A. Olson, M. E. Gröller, and I. Viola. Labels on Levels: Labeling of
multi-scale multi-instance and crowded 3d biological environments. IEEE
Trans. Vis. Comput. Graph., 25(1):977–986, 2019. doi: 10.1109/TVCG.
2018.2864491 1, 2
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1 SYMBOL NOTATIONS

For clarity, Tab. 1 summarizes the key symbols used in this paper along
with their respective meanings.

2 ADDITIONAL EXPERIMENTS

2.1 Implementation Details

We use pre-trained ResNet-101 as the feature backbone. The spatial
sizes of input images are set to H = W = 256. The feature maps of
layers conv4-23 and conv5-3 are concatenated to form the features
F. Therefore, the dimension of the visual features is dv = 3072. We set
the numbers of Transformer blocks and MoCE-Transformer blocks to
nt = 2 and nm = 1, respectively. The hidden dimensions of the node
and edge representations are both set to d = 288. The QKV vector
dimensions in the node and edge MHSA layers are both set to 18. Both
MHSA layers have 16 attention heads and an output dimension of 288.
The hidden dimensions of the node and edge FFNs are set to 96 and 48,
respectively. Specifically, the hidden dimensions of the expert FFNs
are all set to 96. The dimension of the graph representation is set to
dh = 300. For the reference feature extractor, we set the number of
Transformer blocks to ns = 3, with other settings consistent with the
above LPCE configurations.

AdamW optimizer is used for training the feature extractor and
LPCE. The hyperparameters are ε = 1e-8, (β1,β2) = (0.9,0.999), and
weight decay of 0.01. Initial learning rates are set to 1e-4 and 8e-5 for
training the extractor and LPCE, respectively, both halved at regular
intervals. Batch sizes are 16 and 8, respectively. Before training LPCE,
we pre-train the reference feature extractor using the focal loss (Eq. (2))
and freeze it afterward. Then, three losses proposed in [46] namely
displacement loss, distance loss, and overlap loss, are used to guide
the training of LPCE, with original weights of 1.0, 0.2, and 0.008,
respectively. All experiments are run on a single NVIDIA GeForce
RTX 4090 GPU and an Intel Core i9-13900k CPU. LPCE and other
models are implemented using PyTorch and PyTorch Geometric library.
We will release our algorithm upon the publication of this paper.

2.2 Calculations of Metrics

The calculations of the three metrics—PCK, IoU, and Overlap—are
introduced as follows.
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Table 1: Symbol notations.

Symbol Meaning

L,D sets of label information, displacements
G,V,E,N complete graph, sets of node vectors, edge vectors, neighbors

R sets of real numbers

I,F,H,C input image, convolutional feature maps, style feature matrix, count matrix
a,b,d anchor, box size, displacement
z,e,h node representation, edge representation, style feature
y,p,c probability distribution, assignment probability, centroid parameters

E ,D encoder, decoder
F ,P,L fusion function of style features, predictor, focal loss function

K number of entities
n,d quantity, dimensionality
g,v superscripts or subscripts of geometric feature, visual feature

z,e,a superscripts of node, edge, augmented feature
r,m,e subscripts of RA, MoCE, expert

• PCK@τ is defined as the ratio of successfully placed labels to the
total number of labels [46, 64]:

PCK =
1
nl

nl

∑
i=1

1
(∥∥l̂i − li

∥∥≤ τ ·max(hl ,wl)
)

(1)

where hl and wl are the height and width of the label layout, li =
ai+di and l̂i = ai+ d̂i denote the ground-truth and predicted label
positions, respectively, computed by adding the displacements
to the anchor position. The indicator function 1 returns 1 if the
distance between predicted position l̂i and ground-truth position
li is smaller than τ ·max(hl ,wl).

• IoU is calculated based on predicted and ground-truth label
boxes [48]:

IoU =
1
nl

nl

∑
i=1

|oi ∩ ôi|
|oi ∪ ôi|

(2)

Each label box is represented by its center and size, where the
center corresponds to the label position, i.e., oi = [li,bi] and
ôi =

[
l̂i,bi

]
.

• Overlap is computed as the average IoU over all pairs of label
boxes [36]:

Overlap =
2

nl (nl −1) ∑
1≤i< j≤nl

∣∣ôi ∩ ô j
∣∣∣∣ôi ∪ ô j
∣∣ (3)

2.3 Qualitative Results
The predicted label layouts of several samples from the SWU-AMIL
dataset by GCN2rm [10], GPSrm [47], GMoEr [58], LPGT∗ [46], and
LPCE are visualized in Fig. 1.

To demonstrate the generalizability of LPCE, we test it on several
unseen samples from [14, 15, 42]. We manually annotate them and
provide anchor points for prediction. The LPCE model, trained on
the SWU-AMIL dataset, is directly applied to generate label layouts.



The predicted and corresponding human-labeled layouts for four un-
seen samples are visualized in Fig. 2. LPCE performs well on the
“Human Head” and “Wheel Fork” samples, producing clear and well-
aligned layouts. For the “Digestive System” sample, although the label
“Gullet” is placed on the right side rather than the left as in the human-
labeled layout, the overall layout remains acceptable and readable. The
“Spheres” sample poses challenges in terms of its dense and uniform
structure. In this case, LPCE’s output shows some label overlaps and
occlusions of target elements. In summary, these results demonstrate
that LPCE generalizes well to unseen samples without retraining.



Fig. 1: Visualization results on the SWU-AMIL dataset. Solid boxes represent ground-truth label positions, while dashed boxes indicate predicted
ones. Different colors distinguish labels, and label texts are omitted in predictions for clarity.



Fig. 2: Visualization results on some unseen samples from [14, 15, 42].
Solid boxes represent human-labeled label positions, while dashed boxes
indicate positions predicted by LPCE. Different colors distinguish labels,
and label texts are omitted in predictions for clarity.
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