
PharmKi: A Retrieval System of Chemical Structural Formula
Based on Graph Similarity

Jingwei Qu #1, Xiaoqing Lu #∗2, Chengcui Zhang †3, Penghui Sun #4, Bei Wang #5, Zhi Tang #∗6
# Institute of Computer Science & Technology, Peking University, Beijing, P.R.China

∗ State Key Laboratory of Digital Publishing Technology, Beijing, P.R.China
† Department of Computer Sciences, University of Alabama at Birmingham, Birmingham, USA

1,2,4,6 {qujingwei, lvxiaoqing, sph, tangzhi}@pku.edu.cn, 3 czhang02@uab.edu, 5 wangbei@bupt.edu.cn

Abstract—Different from conventional media type, chemical
structural formula (CSF) is a primary search target as a
unique identifier for each compound in the research field of
medical information retrieval. This paper introduces a graph-
based CSF retrieval system, PharmKi, accepting the photos
taken from smartphones and the sketches drawn on tablet
PCs as inputs. To establish a compact yet efficient hypergraph
representation for molecules, we propose a graph-isomorphism-
based algorithm for evaluating the spatial similarity among
graphical CSFs, as well as selecting dominant acyclic subgraphs
on the basis of overlapping analysis. The results of comparative
study demonstrate that the proposed method outperforms the
existing methods with regard to accuracy and efficiency.

Keywords-chemical structural formula; multimedia informa-
tion retrieval; frequent subgraph mining; graph isomorphism;

I. INTRODUCTION

Medicine information retrieval is high-valued to health

professionals, people with medical conditions and the so-

ciety at large. Being able to search medicine information

efficiently by the similarity of molecule structure is not only

helpful for pharmaceutical innovations but also essential for

intellectual property protection. Different from conventional

media type, chemical structural formula (CSF) is the ideal

and precise identifier of a chemical compound at the molec-

ular level. However, the structure-similarity-based search in

almost all existing retrieval systems is far from satisfactory.

The most formidable challenge in current retrieval ap-

proaches is the lack of a highly compact and efficient de-

scription of CSFs and the corresponding similarity measure-

ments. Representing CSFs with graphs is a common option,

which maps atoms to vertices and bonds to edges. However,

such traditional graphs easily lead to a cost-prohibitive

graph matching for large molecules. Moreover, there is yet

another fundamental challenge, subgraph overlapping, that

hinders these methods from establishing the correct compact

representation of an original CSF graph.

The contributions of our work are threefold:

• We introduce a complete workflow of the CSF re-

trieval system (called PharmKi), including multiple

input methods;

• we theoretically investigate a critical problem that

directly affects the efficiency of graph matching and

propose a graph-isomorphism-based algorithm in our

solution;

• we empirically evaluate our system using the available

public dataset.

The rest of this paper is organized as follows: Section II

summaries the related work in this field. Section III intro-

duces PharmKi, including the workflow, collapsing methods,

hypergraph construction, and similarity measure. Section IV

illustrates our experiments and evaluation results. Section V

concludes this paper.

II. RELATED WORK

Recent approaches for CSF retrieval can be roughly

divided into three categories, sequence-based, fingerprint-

based, and graph-based.

Many biological and chemical data are expressed as se-

quential strings. Chemical languages, for example, SMILES

(Simplified Molecular Input Line Entry System) [1] can

represent molecular structures with symbol strings.

Many current applications in compound comparison and

virtual screening rely on fingerprint similarity [2]. Molecu-

lar fingerprints encode properties of molecules through bit

string comparisons. Topological fingerprints [3] converted

the paths of molecular features linearly up to a given number

of connecting bonds.

Graphs provide a generic data structure widely used in

cheminformatics and bioinformatics [4]. Graph-based ap-

proaches could be classified into four subcategories, graph

descriptor, similarity-based graph mining, graph embedding,

and graph kernel.

The descriptors range in complexity from one-

dimensional statistics [5], to two-dimension topological

indices [6], and to complex three-dimensional descriptions

[7]. Graph mining aims to search similar compounds or

to predict physical and biological properties of molecules.

Conventional techniques include maximum common

subgraph [8], frequent graph mining [9], and edit distance

[10]. Graph embedding means representing graphs with

vectors. To tackle graph mining/matching with machine
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Figure 1. Workflow of CSF retrieval system, PharmKi: (i) CSF input and formalization, (ii) cyclic CSF collapsing, (iii) acyclic subgraph mining and
optimization, (iv) construction of hypergraphs, and (v) similarity measurement.

learning methods [11], an explicit vector space is needed

where each graph is embedded. Gibert et al. [12] adopted

the attribute statistics and encoded the frequency of a node

or an edge label. To avoid the severe drawback of graph

embedding, i.e., loss of part of the structural information

in the compact vector representation, graph kernels adopt a

mathematical framework that defines a similarity measure

between graphs as a scalar product in a Hilbert space [13],

and therefore, provide an embedding space sufficiently

large for graph transformation. Gaüzére et al. [14] adopted

a bag of patterns defined as a subset of strict sub trees,

which includes all labeled trees having at most six nodes.

Cyclic pattern kernel [15] decomposed a graph into a cycle

set and a set of bridges corresponding to atoms and bonds

not in cycles. Learning more elaborate models, i.e. density

and energy of compounds, improves the current analysis

for realistic molecular systems effectively [16], [17].

Overall, despite several decades of research on CSFs,

there are still many challenges, including the cost-prohibitive

matching of large molecules. In fact, most practical retrieval

systems still rely on the indirect descriptions of the chemical

structure. In academic research, some matching methods

based on subgraph compression are proposed, but they are

limited to several common substructures. Little attention is

paid to the acyclic substructures in large-scale CSF datasets

and retrieval.

III. RETRIEVAL OF CSFS

As shown in Fig. 1, the workflow of PharmKi consists

of five key steps: (i) CSF input and formalization, (ii)
cyclic CSF collapsing, (iii) acyclic subgraph mining and

optimization, (iv) construction of hypergraphs, and (v)

similarity measurement.

A. CSF Input and Formalization

In the first step, CSFs are obtained from multiple in-

put channels. For a photo taken with a smartphone, we

implement a rule-based method to extract the CSF in the

picture, including image preprocessing, edge detection, char-

acter recognition, and formula construction. To acquire a

CSF from a sketch drawn on touch screens, we developed

several techniques specifically for this purpose, for instance,
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Figure 2. Examples of CSF: (a) a cyclic CSF; (b) an acyclic CSF.
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Figure 3. Graph representations of molecules (a) Funapide and (b)
Etelcalcetide.

detecting corners based on temporal sequence analysis,

distinguishing characters from lines by leveraging an inter-

active gesture, layout reconstruction via utilizing the domain

knowledge.

An obtained molecule is then represented by a labeled

graph based on the following definition, where the vertices

represent atoms and edges represent the bonds.

Definition III-A.1 A CSF is an undirected attributed simple

graph represented as a 6-tuple G = (V,E, ΨV , ΨE , ΓV , ΓE).

• V is a set of vertices, E ⊆ V × V is a set of edges;

• ΨV and ΨE are the label functions that assign labels to

vertices in V and edges in E, respectively;

• ΓV and ΓE are the label sets of V and E, respectively.

Fig. 3 shows graph representations of molecules Funapide

and Etelcalcetide (Fig. 2). To improve the efficiency of

retrieval, we divide molecules into two categories, cyclic

CSFs and acyclic CSFs (as shown in Fig. 2), by judging if

they contain at least one cycle or not.
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B. Cyclic Subgraph Collapsing

Given a cyclic CSF, denoted as a graph ̂G = (̂V , ̂E,
Ψ

̂V , Ψ ̂E , Γ̂V , Γ ̂E), the main steps of collapsing cycles in the

cyclic CSF are:

1) Utilize a method based on the RDKit [18] to extract all

the cycles in the cyclic CSF and form its cycle set, Sc;

2) Analyze the relations among the cycles in Sc, including

separation, tangency, and intersection;

3) Establish a cycle graph Gc, in which each vertex

corresponds to a cycle, and each edge represents the

relation between every two cycles if they are spatially

adjacent.

C. Acyclic Subgraph Mining and Optimization

Different from cyclic CSFs that share an apparent sub-

structure, i.e., the cycle structure, most substructures in

acyclic CSFs are full of diversity. More specific analyses,

including the detection of frequent subgraphs, the selection

of dominant subgraphs and acyclic graph collapsing, are

worth exploring for acyclic subgraphs.

Definition III-C.1 A frequent subgraph is represented as a

6-tuple Gf = (Vf , Ef , ΨVf
, ΨEf

, ΓVf
, ΓEf

) with a specific

support value H(Gf ).

• Vf is a set of vertices, Ef ⊆ Vf ×Vf is a set of edges;

• εmin ≤ |Vf | ≤ εmax, εmin and εmax are the lower and

upper bounds of the scale of Gf , respectively;

• H(Gf ) is the number of graphs (in a given graph

dataset D) in which Gf is an induced subgraph,

H(Gf ) ≥ δ, i.e., δ is the lower bound of H(Gf ).

The obtained frequent subgraphs from D = {G1, G2,
. . . , Gi, . . . , Gn} are defined as another graph set,

Sf = {Gf
1, Gf

2, . . . , Gf
j , . . . , Gf

m} (1)

where Gf
j denotes the jth frequent subgraph, j ≤ m, and

m is the total number of obtained frequent subgraphs. Λi is

the feature vector to represent each graph Gi ∈ D:

Λi = [λ
Gf

1

i , λ
Gf

2

i , . . . , λ
Gf

j

i , . . . , λ
Gf

m

i ] (2)

where λ
Gf

j

i is the number of Gf
j instances in Gi.

Theoretically, we can collapse each frequent subgraph into

a hypervertex to generate a hypergraph. However, the over-

lap between subgraphs poses a serious barrier to achieving

the optimal hypergraph. Some pairs of frequent subgraphs

share one or more vertices/edges: (i) intersecting, i.e., one

subgraph partially overlaps with another; (ii) including, i.e.,

one subgraph is completely included by another. Further-

more, when λ
Gf

j

i > 1, multiple instances of the same

frequent subgraph Gf
j may overlap with each other.

Different selection strategies will lead to different sub-

graphs to be compressed and consequently different final

hypergraphs. Without loss of generality, the minimum hy-

pergraph among all possible results is considered optimal

for further comparison as it leads to the lowest cost of

matching calculation. Therefore, we transform this selection

to a problem of optimal subgraph cover.
A dominance-priority algorithm based on the analysis of

overlapping subgraphs is proposed as our solution to the
cover problem. We define the dominance score ω for each
frequent subgraph Gf

j based on the scale |Vf j | and the

support value H(Gf
j):

ω(Gf
j) = |Vf

j |+H(Gf
j)
/ m∑

j=1

H(Gf
j) (3)

H(Gf
j) =

n∑
i=1

h(Gf
j , Gi), h(Gf

j , Gi) =

{
1, λ

Gf
j

i ≥ 1

0, Otherwise.

Ω = {ω(Gf
1), ω(Gf

2), . . . , ω(Gf
j), . . . , ω(Gf

m)} (4)

∀ω(Gf
j) ∈ Ω reveals not only the local dominance with

the scale of Gf
j , but also the global influence with H(Gf

j)
over the entire graph dataset.

The dominant subgraphs in a graph are selected with

Algorithm 1 in the following steps. We initialize all the

vertices in a graph Gi as uncovered. In Steps 2∼3, a

candidate frequent subgraph set Sf
can is constructed by

including all the frequent subgraphs in Gi, i.e., including

only those Gf
j whose corresponding λ

Gf
j

i �= 0, then sorted

in the decreasing order of their dominance scores in Ω. Then

the dominant subgraphs set Sf
dom is initialized (Step 4).

To locate all possible instances of every frequent subgraph

in Gi, we adopt a graph isomorphism algorithm, VF2

[19], to obtain multiple instances set Υ (Gf
x, Gi) of each

candidate frequent subgraph Gf
x of Sf

can in Gi in Step

6. During Steps 7∼16, each subgraph instance Gf
x
y in the

Υ (Gf
x, Gi) of the current frequent subgraph Gf

x is checked

for its coverage (Step 8). If none of the vertices of Gf
x
y

are covered, label these vertices in Gi as covered, and insert

the subgraph Gf
x
y to Sf

dom (if it is not already included)

(Steps 9∼12). Otherwise, if at least one vertex of the current

subgraph instance Gf
x
y is already covered, we discard this

instance and move on to the next instance in Υ (Gf
x, Gi)

(Step 14).

D. Construction of Hypergraph

The hypergraph Gh of a CSF takes into account the

adjacency relations between cyclic and acyclic parts of the

CSF. It can be defined as follows.

Definition III-D.1 An undirected attributed hypergraph is

a 6-tuple Gh = (Vh, Eh, ΨVh
, ΨEh

, ΓVh
, ΓEh

) based on an

undirected attributed simple graph G = (V,E, ΨV , ΨE , ΓV ,
ΓE).

• Vh is a set of hypervertices. A hypervertex encodes at

least one vertex v ∈ V . Eh ⊆ Vh × Vh is a set of

hyperedges.

To establish the ̂Gh from a cyclic graph ̂G that has an

associated cycle graph Gc, two auxiliary sets Vac and Eac
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Algorithm 1 Dominant subgraph selection.

Input: Gi = (Vi, Ei, ΨVi , ΨEi , ΓVi , ΓEi) ∈ D
Sf = {Gf

1, Gf
2, . . . , Gf

j , . . . , Gf
m}

Λi = [λ
Gf

1

i , λ
Gf

2

i , . . . , λ
Gf

j

i , . . . , λ
Gf

m

i ]

Ω = {ω(Gf
1), ω(Gf

2), . . . , ω(Gf
j), . . . , ω(Gf

m)}.
Output: Dominant subgraphs in Gi.

1: Initialize all the vertices in Vi as ‘uncovered’;

2: Filter: include all the Gf
j of Sf for which λ

Gf
j

i �= 0 to obtain
a candidate frequent subgraph set Sf

can;
3: Rank: Sort the subgraphs in Sf

can in the decreasing order of
their dominance scores in Ω;

4: Initialize Sf
dom = ∅;

5: for each Gf
x ∈ Sf

can do
6: Compute Υ (Gf

x, Gi) of Gf
x in Gi by VF2;

7: for each Gf
x
y ∈ Υ (Gf

x, Gi) do
8: if all the vertices in Vf

x
y are uncovered then

9: Label Vf
x
y in Gi as covered;

10: if Gf
x
y /∈ Sf

dom then
11: Sf

dom.append(Gf
x
y);

12: end if
13: else
14: Discard Gf

x
y;

15: end if
16: end for
17: end for

are introduced, which include all the vertices and edges in
̂V and ̂E but not in any cycle, respectively. ̂Gh is initialized

as Gc. Then ̂Vh is established by repeatedly adding vertices

in Vac. Thereafter, we determine whether each edge in Eac

connects to any cycle in G. If the edge connects to one

cycle, we insert a corresponding hyperedge into ̂Eh with a

label assigned by Ψ
̂Eh

to connect one hypervertex from Vac
and the other hypervertex that represents the corresponding

cycle. All the other edges in Eac that do not connect to

any cycle will be inserted into ̂Eh. Fig. 4(a) shows the

hypergraph of molecule Funapide (Fig. 2(a)).

With the obtained dominant subgraphs in Algorithm 1, we

generate the hypergraph ˜Gh for an acyclic CSF ˜G according

to the following steps. We first collapse the covered sub-

graphs in Sf
dom into the corresponding hypervertices in ˜Vh.

Then the remaining uncovered vertices of ˜V are added into
˜Vh. Next, we check whether each uncovered edge connects

to any covered subgraph in ˜G. If the edge connects to one or

two covered subgraphs, we insert a corresponding hyperedge

with a label assigned by Ψ
˜Eh

into ˜Eh for two hypervertices

of ˜Vh that represent two adjacent subgraphs in the original
˜G. Finally, the remaining uncovered edges are added into
˜Eh. The hypergraph of molecule Etelcalcetide (Fig. 2(b)) is

shown in Fig. 4(b).

E. Similarity Measure and Dual-stage Matching
We propose two measures of similarity between a query

Q and each CSF G in a given dataset, ηe and ηl: (i) ηe

(a) Hypergraph of Fu-
napide

(b) Hypergraph of Etel-
calcetide

Figure 4. Hypergraph representations of molecules (a) Funapide and (b)
Etelcalcetide.

is the similarity on the element level, which describes the
matching degree on atoms and bonds between Q and G:

ηe(Q,G) = MGED(Q,G) (5)

where MGED(Q,G) denotes the minimum graph edit
distance between Q and G, calculated by a method based on
a systematic strategy [20]. (ii) A (sub)isomorphism degree
ηl is the similarity on the layout level:

ηl(Q,G) = ISO(Q,G) (6)

where ISO(Q,G) denotes the number of (sub)isomorphism
between the two graphs. We combine ηe and ηl by a
weighted sum:

η(Q,G) = αηe(Q,G) + (1− α)ηl(Q,G) (7)

where α and 1 − α denote the weights for ηe and ηl,
respectively.

A dual-stage matching is performed, including

hypergraph-based screening and graph-based searching. In

the first stage, query Q is compared with all the CSFs in the

dataset based on hypergraph-based representation with ηe.

Then the obtained top-k1 (k1 	 |D|) results are utilized to

build a candidate CSF set for the next stage. In the second

stage, Q is compared with each CSF in the candidate set

based on their original graph representations using η to

obtain the top-k2 CSFs as the final matching results.

IV. EXPERIMENT AND EVALUATION

To evaluate the performance of PharmKi, we first com-

pare PharmKi with Wikipedia Chemical Structure Ex-

plorer (WCSE)1 [21] on retrieval accuracy over Wikipedia

molecules dataset (WIKI)2. Second, several retrieval cases

are presented to intuitively compare with WCSE. In addition,

we evaluate retrieval efficiency and collapsing efficiency on

WIKI.

All experiments are conducted on an iMac with a 3.2GHz

Intel Core i5 CPU and a 16 GB memory using MATLAB

R2016b. We adopt the WIKI dataset for comparison. The

number of molecules in this dataset is 15,312. The average,

the maximum, and the minimum values of the number of

1http://www.cheminfo.org/wikipedia/
2http://www.cheminfo.org/wikipedia/smiles.txt
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Table I
MAP, DCG, RBP85, AND ERR AT TOP-k2 (2∼6) RESULTS

Metric PharmKi WCSE Metric PharmKi WCSE
MAP2 96.00% 91.50% DCG2 18.12 17.38
MAP3 89.67% 84.33% DCG3 19.67 18.82
MAP4 85.13% 79.88% DCG4 20.71 19.78
MAP5 82.20% 76.90% DCG5 21.58 20.50
MAP6 79.50% 73.25% DCG6 22.29 21.11

RBP852 26.73% 25.58% ERR2 94.60% 93.20%
RBP853 35.07% 33.17% ERR3 94.84% 93.49%
RBP854 41.66% 39.29% ERR4 94.94% 93.61%
RBP855 47.18% 44.38% ERR5 95.00% 93.67%
RBP856 51.57% 48.04% ERR6 95.03% 93.71%

atoms in a molecule are 41.75, 2,794, and 1, respectively.

The average, the maximum, and the minimum values of the

number of bonds in a molecule are 42.83, 2,821, and 0,

respectively.

Frequent subgraphs are extracted from the dataset, with

the following parameter setting εmin = 3 and εmax = 300
(Definition III-C.1). To find an appropriate values of δ
(subgraph frequency), we calculate the numbers of obtained

frequent subgraphs at different frequency thresholds. We

then set δ = 10% in the WIKI dataset, because the number

of frequent subgraphs starts to drop very slowly with the

increase of δ passing 10%. After comparison of various

parameter settings, we set α = 0.75 (Equation 7) and

k1 = 50 for the first-stage matching (subsection III-E).

We compare PharmKi with WCSE [21], which is the

state-of-the-art system allowing CSF similarity searching

within WIKI dataset. As shown in Table I, Mean Aver-

age Precision (MAP), Discounted Cumulative Gain (DCG),

Rank-Biased Precision (RBP), and Expected Reciprocal

Rank (ERR) are adopted to evaluate the retrieval perfor-

mance of the two systems. The parameter p in metric RBP
is selected as 0.85. We set the range of values for k2 to

2∼6. From the top-2 to the top-6 retrieved results, PharmKi

achieves higher values on these metrics than WCSE at each

one. Specifically, PharmKi not only retrieves more similar

CSFs, but also obtains better ranking results than WCSE

according to the results of MAP and DCG. Higher values on

RBP85 and ERR of PharmKi indicate that it returns more

desirable and satisfying CSFs than WCSE for users. As the

top-k2 increases, the performance deteriorates on all metrics.

It indicates that both systems are able to assign a higher

rank to more similar CSFs. Besides, the differences of MAP,

DCG, and RBP85 of the two systems grow larger as top-k2
increases, which demonstrates that PharmKi performs better

than WCSE especially in large-scale retrieval of CSFs.

Several concrete retrieval results returned by PharmKi and

WCSE are presented in Table II for intuitive comparison,

with k2 = 5. Both systems can find the exact match of

the query CSF and return it as the top-1 result. However,

in the remaining results: (i) The first query molecule, Iso

E Super, contains two dominant cycles. PharmKi retrieves

Table II
COMPARISON OF THE TOP-5 RETRIEVAL RESULTS FROM PHARMKI

AND WCSE ON WIKI

Query Top-5 retrieval results
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For each query, the first row of column ‘Top-5 retrieval results’
contains the top-5 results from PharmKi, and the second row shows
the top-5 results of WCSE.

three similar CSFs with two cycles. However, WCSE only

returns one CSF with two cycles, while the others are not

very similar to the query. Besides, the atom number and the

bond number of Iso E Super are 43 and 44, respectively. The

average numbers of atoms and bonds among the PharmKi

results are 42.4 and 43.8, respectively, but the corresponding

mean values of WCSE are 47.8 and 49.8, respectively.

This fact reflects that our results are closer to Iso E Super

than those of WCSE. (ii) The second query molecule,

Solanone, is an acyclic CSF, which is constituted by a

dienone and two substitutes, a 5-propyl and a 8-methyl.

The results of PharmKi are all acyclic CSFs including the

carbon chains like Solanone. The results of WCSE, on the

contrary, are all cyclic CSFs except the first one. (iii) The

third query molecule, Funapide, contains six cycles and a

trifluoromethyl. The four results of PharmKi all contain a

trifluoromethyl, and they have three or four cycles. However,

WCSE returns only one CSF with a trifluoromethyl. The

average numbers of atoms and bonds of the top-5 results

returned by PharmKi are 44.4 and 47.4, which are closer

to the numbers of atoms and bonds in Funapide, 45 and

50, compared with the values of WCSE, 63.4 and 66.8,

respectively. Unsatisfactory results of WCSE may be caused

by the complicated structure of Funapide.

We further compare the retrieval time for queries of

PharmKi with a baseline method. The baseline method

means that a query is represented by a original graph,

no collapsing or hyergraph representations. We randomly

select 50 cyclic queries and 50 acyclic queries in WIKI.

For each method, we measure the total retrieval time of

the 100 queries with k2 = 10 denoted as TPharmKi and

TBaseline, respectively. The results, TPharmKi = 15.33s
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and TBaseline = 90.06s, show that PharmKi yields 82.98%

less retrieval time. To evaluate the performance of the

hypergraph, we compare the average values of |V | and

|E| of all graphs and the same values of all corresponding

hypergraphs in WIKI. The hypergraph saves 46.29% and

53.96% space for vertices and edges, respectively.

V. CONCLUSIONS

This paper proposes a graph-similarity-based retrieval ap-

proach for CSFs. To obtain satisfactory retrieval results, we

propose an isomorphism-based algorithm for dominant sub-

graph selection based on the subgraph overlapping analysis.

Experiments demonstrate the effectiveness of the proposed

approach. However, due to the size of large molecules and

their complexity, there are still many problems worth fur-

ther exploration, including advanced hypergraphs for large

formulas, stereo graphs for representing the 3D information

and high-efficiency graph matching methods for evaluation.
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