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ABSTRACT

Semantic correspondence aims to establish dense correspon-
dences between semantically similar images. Multi-level
image features have been commonly used in recent stud-
ies due to their rich information. However, this approach
poses a challenging problem of how to distinguish the impor-
tance of multiple similarity scores for each candidate match.
Moreover, the introduction of the level dimension increases
ambiguous matches. To address these challenges, we de-
velop a Multi-granularity Inter-level Attention-based Match-
ing (MIAM) network. Specifically, multi-scale inter-level
self-attention, conditioned on correlation patches of various
sizes, is proposed to adjust the effect of similarities from dif-
ferent levels on building correspondences. Next, we introduce
a dual dimensional re-weighting strategy to further alleviate
the ambiguity issue. Based on the convolutional aggregation
of the multi-level scores along the spatial and level dimen-
sions, this strategy strengthens positive matches while sup-
pressing negative ones. In the thorough evaluation on three
semantic correspondence benchmarks, MIAM achieves com-
petitive performance compared to popular methods.

Index Terms— Semantic correspondence, multi-
granularity, multi-level correlation

1. INTRODUCTION

Semantic correspondence aims to establish pixel-wise, locally
consistent correspondences between images that contain dif-
ferent instances of the same category. This task is crucial in
numerous computer vision applications, such as 3D recon-
struction [1]. It is more challenging than matching images
just taken under different geometric settings due to the large
intra-class appearance variations and geometric differences
between the above semantically similar images [2, 3].

Remarkable success of convolutional neural networks
(CNNs) in various domains has led to the development of
CNN-based methods for semantic correspondence [4, 5, 6].
These methods follow a pipeline similar to the classical
matching, including feature extraction, cost aggregation, and
flow estimation. Some methods focus on extracting multi-
level image features [7], while others propose different repre-
sentations of correspondences in the third stage [8, 3]. Given
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Fig. 1. A multi-level correlation map presents multiple simi-
larity scores per candidate match, introducing more ambigu-
ity (e.g., such as matches with identical scores across levels).

the importance of similarity scores (i.e., correlation map) in
matching tasks, recent approaches have shifted their atten-
tion to improving the quality of correlation map, e.g., design-
ing high-dimensional convolutional [9, 10] or Transformer-
based [6, 11] aggregation. Nonetheless, the progress in ad-
dressing two critical challenges is still limited.

Previous studies have demonstrated that multi-level im-
age features can aid in establishing dense correspondences.
However, richer features also pose an inherent issue. In the
resulting multi-level correlation map, the importance of each
candidate match’s multiple similarity scores varies (as illus-
trated in Fig. 1). It is crucial to adjust the effect of similarities
from different levels based on their importance to ensure the
quality of correspondences. Furthermore, the introduction of
the level dimension raises more ambiguous matches, making
it more difficult to distinguish between positive and negative
matches in the search for the optimal correspondences.

To tackle the aforementioned challenges, we present
a Multi-granularity Inter-level Attention-based Matching
(MIAM) network for semantic correspondence (Fig. 2). Our
solution incorporates a multi-scale inter-level self-attention
mechanism, where we treat similarity scores in a correla-
tion patch as an individual element for attention and consider
different patch sizes to enrich the type of the attention ele-
ment. The importance of similarities at different levels is
captured from their interactions along the level dimension,
and is then utilized to adaptively adjust their effects on build-
ing correspondences. To further address the issue of increas-
ing ambiguous matches, we introduce a dual dimensional re-
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Fig. 2. Overall architecture of MIAM.

weighting strategy in MIAM. This strategy generates two at-
tention maps by convolutional aggregation of the scores in the
minimum and maximum patches along the spatial and level
dimensions, respectively. The scores are then re-weighted us-
ing the attention maps, which strengthens positive matches
while suppressing negative ones. Compared to the previous
single patch size [6, 11], the multiple patch sizes form a multi-
granularity refinement for the correlation map (Fig. 3). In ex-
periments on three popular semantic correspondence bench-
marks, MIAM achieves competitive performance in compari-
son with other methods, both quantitatively and qualitatively.

2. METHODOLOGY

The proposed Multi-granularity Inter-level Attention-based
Matching (MIAM) network follows the classical three stages
of semantic correspondence (Fig. 2): feature extraction, cost
aggregation, and flow estimation.

2.1. Feature Extraction

Given a pair of images to be established dense correspon-
dences, referred to as the source and target images Is, It ∈
RH×W×3, a CNN ϕ is utilized to extract the respective multi-
level features. Taking Is as an example, a sequence of feature
maps from different layers is extracted by the feature back-
bone ϕ. From these maps, several are selected and bi-linearly
interpolated to the same spatial size h × w. These resized
feature maps create a multi-level feature set Fs = {Fk

s ∈
Rhs×ws×dk}nl

k=1, where Fk
s denotes a feature map at the k-th

level, dk is the number of channels of Fk
s , nl is the number of

levels, and the subscript s is used only to distinguish the two
images, in other words, hs = ht = h and ws = wt = w.

2.2. Cost Aggregation over Multi-granularity Refinement

The multi-level correlation map C ∈ Rhsws×htwt×nl is
then computed based on the two multi-level features Fs,Ft.
Specifically, given the source and target feature maps Fk

s ,F
k
t

at the k-th level, the k-th level of C is computed as Ci,j,k =

Single-Granularity Multi-Granularity

Fig. 3. Conceptual difference between CATs [6] and ours.
Compared to a single patch size, multiple patch sizes enrich
the granularity of the basic attention element.

Fk
si,:

· Fk
tj,:

, where i, j ∈ R2, i = id(i), j = id(j), id(·) is a
bijection function that maps a 2D spatial position of a feature
map of shape h × w to an integer index in {1, . . . , hw}. In
this way, each feature map is treated as h ∗ w local features,
and Ci,j,k reveals the similarity score between the two local
features Fk

si,:
and Fk

tj,:
. Next, the correlation map C is refined

by the multi-granularity inter-level attention.
Multi-scale Inter-level Self-attention. We propose a multi-
scale inter-level self-attention mechanism to explore how sim-
ilarities across levels affect correspondence establishment. As
shown in Fig. 4(a), the correlation map C:,:,k ∈ Rhsws×htwt

at each level is transformed into a sequence of flattened
patches with a fixed size, Rhsws×htwt → Rnp×p2

, where
(p, p) is the size of each patch, and np = hsws ∗ htwt/p

2 is
the resulting number of patches. Patches at identical positions
across nl levels constitute the input sequence X ∈ Rnl×p2

for
attention, i.e., the similarity scores in each patch are treated
as an attention element. Thus, the multi-level correlation
map C is transformed to np sequences, Rhsws×htwt×nl →
Rnp×nl×p2

, each with the length of nl and the dimension
of p2. The multi-head self-attention (MHSA) of the np se-
quences is computed iteratively:

Q = XWQ, K = XWK , V = XWV

SAh(X) = softmax
(QK⊤
√
dK

)
V

MHSA(X) = [SAh(X)]nh

h=1WO

(1)



(a) Multi-scale inter-level self-attention

(b) Level convolutional aggregator

(c) Spatial convolutional aggregator
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Fig. 4. Illustration of multi-granularity refinement.

where WQ,WK ∈ Rp2×dK , WV ∈ Rp2×dV , WO ∈
RnhdV ×p2

, [·] denotes the concatenation operation, h is the
head index, and nh is the number of heads. In this paper, we
have omitted the details of bias terms for brevity.

Furthermore, multiple patch sizes are designed to form
the multi-scale attention. The patch size determines the num-
ber of the similarity scores in a patch. Using various patch
sizes can enrich the basic element type for attention. Thus,
the correlation map C undergoes multi-scale attention with
three different patch sizes P = {8, 16, 32}, and the three
outputs C = {C̃i ∈ Rnpi

×nl×pi
2}3i=1 are reshaped back to

hsws × htwt × nl to compute their weighted sum:

Ĉ =

3∑
i=1

βiC̃i (2)

where Ĉ ∈ Rhsws×htwt×nl denotes the updated correlation
map, pi ∈ P, and βi is the learnable weight of each output.
By mining interactions among the similarities across levels,
the self-attention adaptively adjusts the impact of similarities
from different levels, reducing ambiguous matches.

We further design a Transformer-based aggregator T to
refine the multi-level correlation map. To achieve this, we in-
troduce a multi-head intra-level self-attention block [6] before
the proposed inter-level self-attention block. The intra-level
attention captures the interactions between similarity scores
in a single-level correlation map. We then add a feed-forward
network (FFN) after each MHSA block. The FFN block
contains two linear layers with a GELU non-linearity. Be-
sides, layer normalization (LN) is applied before the MHSA
and FFN blocks for more effective optimization, a technique
widely used in current Transformer implementations. Resid-
ual connections are applied after each block, and necessary
reshaping operations are performed on the correlation map.
Dual Dimensional Re-weighting. To further disambiguate
the correlation map, a dual dimensional re-weighting strat-
egy is introduced (Fig. 4). It complements the above attention
mechanism by analyzing the scores in the minimum and max-

imum size patches, i.e., (1, 1) and (hw, hw).
Based on the concept that convolution operations combine

cross-channel and spatial information [12, 13], we implement
a level convolutional aggregator Cl and a spatial convolutional
aggregator Cs to infer a level attention map Al ∈ R1×1×nl

and a spatial attention map As ∈ Rhw×hw×1, respectively:

Al = σ2

(
W2σ1

(
W1GAP(C)

))
As = σ2

(
W4σ1(W3C)

) (3)

where GAP denotes the global average pooling, σ1 and σ2
denote the GELU and sigmoid functions respectively, and
W1 ∈ Rnl×

nl
r1 , W2 ∈ R

nl
r1

×nl , W3 ∈ Rnl×
nl
r2 and W4 ∈

R
nl
r2

×1 indicate the weights of the convolution operation with
a filter size of 1× 1 for downscaling or upscaling the channel
dimensions. The attention maps are then applied to re-weight
the input correlation map:

Cl(C) = Al ⊙C

Cs(C) = As ⊙C
(4)

where ⊙ denotes the element-wise multiplication. The level
convolutional aggregator Cl uses the pooling operation to
squeeze all scores in the largest patches of size (hw, hw) at
each level. The spatial convolutional aggregator Cs fuses the
multiple scores of each candidate match by focusing on the
smallest patches of size (1, 1). The resulting attention maps
highlight where to focus along both level and spatial dimen-
sions of the correlation map, thus enhancing positive matches
while suppressing negative ones.
Multi-granularity Refinement. The above aggregators are
arranged in series to refine the multi-level correlation map
(Fig. 2). The process is designed based on two common
augmentation approaches for the correlation map [6, 22]: (1)
adding an appearance embedding from the image features to
suppress noise; (2) swapping the order of the two input im-



Table 1. Comparison of PCK@ατ (%) on PF-PASCAL, PF-WILLOW, and SPair-71k. Bold and underlined numbers indicate
the best and the second best performance, respectively. “Feat.-level”: Feature-level, “FT. feat.”: Fine-tune feature. “(F)” and
“(T)” indicate fine-tuning-based testing and transfer testing, respectively.

Methods Feat.-level FT. feat. Aggregation
PF-PASCAL PF-WILLOW SPair-71k
PCK@αimg PCK@αobj PCK@αkp PCK@αobj

0.05(F) 0.1(F) 0.15(F) 0.1(T) 0.1(T) 0.1(F) 0.1(T)

CNNGeo [2] Single × - 41.0 69.5 80.4 - 69.2 20.6 -
A2Net [4] Single × - 42.8 70.8 83.3 - 68.8 22.3 -

WeakAlign [8] Single × - 49.0 74.8 84.0 - 70.2 20.9 -
RTNs [14] Single × - 55.2 75.9 85.2 - 71.9 25.7 -

NC-Net [5] Single ✓ 4D Convolution 54.3 78.9 86.0 - 67.0 20.1 26.4
DCC-Net [15] Single × 4D Convolution 55.6 82.3 90.5 - 73.8 - 26.7
ANC-Net [16] Single × 4D Convolution - 86.1 - - - - 28.7

CHM [17] Single ✓ 6D Convolution 80.1 91.6 94.9 79.4 69.6 46.3 30.1

SFNet [3] Multi × - 53.6 81.9 90.6 - 74.0 28.2 -
HPF [7] Multi - RHM 60.1 84.8 92.7 - 74.4 28.2 -

GSF [18] Multi × 2D Convolution 65.6 87.8 95.9 - 78.7 36.1 -
DHPF[19] Multi × RHM 75.7 90.7 95.0 77.6 71.0 37.3 27.4
SCOT [20] Multi - OT-RHM 63.1 85.4 92.7 - 76.0 35.6 -

MMNet [21] Multi ✓ - 77.6 89.1 94.3 - - 40.9 -
CATs [6] Multi ✓ Transformer 75.4 92.6 96.4 79.2 69.0 49.9 27.1
VAT [22] Multi ✓ 4D Conv. & Trans. 78.2 92.3 96.2 81.6 - 55.5 -

TMatcher [11] Multi ✓ Transformer 80.8 91.8 - 76.0 65.3 53.7 30.1

MIAM Multi ✓ Transformer 77.5 93.6 96.9 79.8 70.0 50.5 28.2

ages to impose bidirectional matching consistency.

C′ = Cl
(
T1
(
[C, ψ(Ft)] +E1

))
+C

C′′ = Cs
(
T2
(
[C′⊤, ψ(Fs)] +E2

))⊤
+C

(5)

Two Transformer-based aggregators, T1 and T2, with shared
parameters are utilized, and combined with the level con-
volutional aggregator Cl and the spatial convolutional ag-
gregator Cs, respectively. For (T1, Cl), the appearance em-
beddings ψ(Ft) from the target image features are concate-
nated with the initial correlation map C, and a learnable po-
sitional embedding E1 ∈ R(hsws+da)×htwt×nl is added as
input, where ψ : Rh×w×di → Rhw×da denotes the linear
projection networks. The first two dimensions of the output
C′ ∈ Rhsws×htwt×nl are then swapped to reflect the target-
source order1. The source appearance embeddings ψ(Fs)
are concatenated with the output and then added with an-
other positional embedding E2 ∈ R(htwt+da)×hsws×nl as
the input for the subsequent (T2, Cs). The resulting output
C′′ ∈ Rhsws×htwt×nl is the final refined result. Residual
connections are applied to both outputs.

1The superscript ⊤ in Eq. (5) denotes the swapping operation on the first
two dimensions of the correlation map.

2.3. Flow Estimation & Training Objective

After refining the multi-level correlation map, we average it
along the level dimension. Then, we transform the averaged
correlation map into a dense flow field D̂ from the source to
target images by the kernel soft-argmax operation [3]. Finally,
we introduce a loss based on the Euclidean distance between
the predicted and ground-truth flow fields to train our model:

L = ||D− D̂|| (6)

The flow field D is constructed using ground-truth keypoints
following the protocol in [7]. It is assumed that the ground-
truth keypoints are provided for image pairs.

3. EXPERIMENTS

We evaluate MIAM by comparing it with state-of-the-art
methods. In addition, we conduct ablation studies on key
components of MIAM to analyze their effectiveness.

3.1. Experimental Settings & Implementation Details

We conduct experiments on three benchmarks: PF-
PASCAL [23], PF-WILLOW [23] and SPair-71k [7], follow-
ing standard evaluation protocols. MIAM is trained on PF-
PASCAL’s training split, with evaluations on both this and
PF-WILLOW’s test split, and separately trained and evaluated



Table 2. Memory and run-time comparison.
Methods Patch size Mem. (GB) Time (ms) PF-P PF-W

VAT [22] (1, 1) 2.2 59.6 92.3 81.6
CATs [6] (384, 1) 0.9 10.9 92.6 79.2

MIAM

(32, 32) 1.0 11.6 93.1 79.3
(16, 16) 0.9 12.9 93.4 79.4
(8, 8) 0.9 19.5 93.3 79.4

{8, 16, 32} 1.0 22.5 93.6 79.8

Table 3. Ablation studies of MIAM on PF-PASCAL.
Methods PCK@0.1

(a) Baseline 92.6
(b) Baseline+DDR 93.2
(c) Baseline+DDR+MIS 93.6

on SPair-71k. Semantic correspondence quality is evaluated
by Probability of Correct Keypoints (PCK), with a thresh-
old ατ · max(hτ , wτ ). τ ∈ {img, obj, kp} indicates that
the threshold relies on the height and width of image, object
bounding box, or bounding box of keypoints, respectively.
ατ ∈ {0.05, 0.1, 0.15} is a tolerance factor.

ResNet-101 pre-trained on ImageNet is adopted as the
feature backbone ϕ. The spatial sizes of the input images
and the multi-level features are set to H = W = 256 and
h = w = 16, respectively. The number of feature lev-
els is set to nl = 8. We set the number of layers in the
Transformer aggregator T to 1, the dimensions of the QKV
vectors and the number of heads in the MHSA blocks to
dK = dV = 48 and nh = 6, and the dimensions of the
appearance embeddings to da = 128. The ratio parame-
ters of the two convolutional aggregators, Cs and Cl, are both
set to r1 = r2 = 8. MIAM is implemented by PyTorch,
and is optimized via AdamW with an initial learning rate of
3 × 10−5, which gradually decreases during training. These
hyperparameters are fixed for all experiments. All experi-
ments are run on a single NVIDIA GeForce RTX 4090 GPU
and Intel Core i9-13900K CPU. Our algorithm is available at
https://github.com/2000LZZ/MIAM.

3.2. Evaluation Results

Quantitative Results. MIAM shows promising performance
across all benchmarks (as shown in Tab. 1). Methods with
multi-level features perform better due to richer seman-
tic information. MIAM leads with a top PCK of 93.6%
(αimg = 0.1) on PF-PASCAL. Compared to VAT [22],
MIAM achieves a lower PCK on SPair-71k. VAT’s advan-
tage may stem from using high-dimensional convolution and
Swin Transformer for broader local receptive fields. How-
ever, this design increases run-time and memory demands, as
discussed in upcoming efficiency experiments. We also as-

Source VAT CATs MIAM

Fig. 5. Qualitative results on PF-PASCAL.

sess the model trained on PF-PASCAL directly on SPair-71k
(last column of Tab. 1). Combined with the results on PF-
WILLOW, MIAM proves its competitive transferability.
Efficiency Results. To assess MIAM’s efficiency, we mea-
sure GPU memory and correspondence inference time of an
image pair (Tab. 2). While the multi-scale inter-level self-
attention captures richer similarity interactions, it requires
more memory and run-time due to the combination of mul-
tiple patch sizes. Opting for a single size boosts efficiency yet
reduces performance.
Qualitative Results. Fig. 5 visualizes the predicted corre-
spondences of several challenging image pairs, where red
lines indicate failed cases. Compared to VAT [22] and
CATs [6], MIAM distinguishes ambiguities and produces de-
sired correspondences in cases involving repetitive patterns
and background clutter.

3.3. Ablation Study

Key Components. To assess the impact of MAIM’s key
components, we conduct ablation studies on the multi-scale
inter-level self-attention (MIS) and the dual dimensional re-
weighting (DDR) strategy. We define a baseline model with-
out these two components. The baseline model uses a single
patch size (hw + da, 1) instead of multiple sizes P. We then
successively add each key component to the baseline model.
Results in Tab. 3 show performance improvements from (a)
to (b), and from (b) to (c) upon adding each component, un-
derscoring the significance of MIS and DDR in refining the

https://github.com/2000LZZ/MIAM


multi-level correlation map.
Convolutional Aggregators. To assess how the order of two
convolutional aggregators affects correspondence quality, we
compare spatial-level and level-spatial arrangements. The
level-first arrangement (PCK 93.6%) outperforms the spatial-
first (PCK 93.4%) by 0.2% on PF-PASCAL. This could be
because the spatial aggregator implicitly captures level inter-
actions by fusing multiple scores of all candidate matches.
The level-spatial order forms an explicit-implicit refining on
the level dimension of the multi-level correlation map.

4. CONCLUSION

This paper presents a Multi-granularity Inter-level Attention-
based Matching (MIAM) network for image correspondence.
MIAM employs a multi-scale inter-level self-attention, condi-
tioned on various correlation patch sizes, to adaptively adjust
the effect of similarities from different levels. Furthermore,
we propose a dual-dimensional re-weighting strategy to dis-
ambiguate multi-level similarities in both level and spatial di-
mensions. Experiments demonstrate MIAM’s effectiveness.
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“End-to-end weakly-supervised semantic alignment,” in
CVPR, 2018.

[9] Ignacio Rocco, Relja Arandjelović, and Josef Sivic, “Ef-
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