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Abstract—Semantic correspondence aims to establish dense
correspondences between semantically similar images. Multi-
level image features have been commonly used in recent studies
due to their rich information. However, this approach poses a
challenging problem of how to distinguish the importance of mul-
tiple similarity scores for each candidate match. Moreover, the
introduction of the level dimension increases ambiguous matches.
To address these challenges, we develop a Multi-granularity Inter-
level Attention-based Matching (MIAM) network. Specifically,
multi-scale inter-level self-attention, conditioned on correlation
patches of various sizes, is proposed to adjust the effect of
similarities from different levels on building correspondences.
Next, we introduce a dual dimensional re-weighting strategy
to further alleviate the ambiguity issue. Based on the convo-
lutional aggregation of the multi-level scores along the spatial
and level dimensions, this strategy strengthens positive matches
while suppressing negative ones. In the thorough evaluation
on three semantic correspondence benchmarks, MIAM achieves
competitive performance compared to popular methods. Our
algorithm is available at https://github.com/2000LZZ/MIAM.

Index Terms—Semantic correspondence, multi-granularity,
multi-level correlation

I. INTRODUCTION

Semantic correspondence aims to establish pixel-wise, lo-
cally consistent correspondences between images that contain
different instances of the same category. This task is crucial
in numerous computer vision applications, such as 3D recon-
struction [20]. It is more challenging than matching images
just taken under different geometric settings due to the large
intra-class appearance variations and geometric differences
between the above semantically similar images [14], [22], [23].

Remarkable success of convolutional neural networks
(CNNs) in various domains has led to the development of
CNN-based methods for semantic correspondence [2], [26],
[27]. These methods follow a pipeline similar to the classical
matching, including feature extraction, cost aggregation, and
flow estimation. Some methods focus on extracting multi-level

∗Corresponding author.

 !"!

Correlation 

Construction

Multi-Level  Features Multi-level Correlation Map

 !

"! "#
 #

$%

"! !

$%

$%

0.86

0.78

0.93

&!

&#

'!

'#

0.92

0.92

0.92

0.92

Fig. 1. A multi-level correlation map contains not only multiple similarity
scores for each candidate match, but also more ambiguous matches (e.g.,
matches with the same score but from different levels).

image features [18], while others propose different represen-
tations of correspondences in the third stage [14], [24]. Given
the importance of similarity scores (i.e., correlation map) in
matching tasks, recent approaches have shifted their attention
to improving the quality of correlation map, e.g., designing
high-dimensional convolutional [13], [25] or Transformer-
based [2], [11] aggregation. Nonetheless, the progress in
addressing two critical challenges is still limited.

Previous studies have demonstrated that multi-level image
features can aid in establishing dense correspondences. How-
ever, richer features also pose an inherent issue. In the resulting
multi-level correlation map, the importance of each candidate
match’s multiple similarity scores varies (as illustrated in
Fig. 1). It is crucial to adjust the effect of similarities from
different levels based on their importance to ensure the quality
of correspondences. Furthermore, the introduction of the level
dimension raises more ambiguous matches, making it more
difficult to distinguish between positive and negative matches
in the search for the optimal correspondences.

To tackle the aforementioned challenges, we present
a Multi-granularity Inter-level Attention-based Matching
(MIAM) network for semantic correspondence (Fig. 2). Our
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Fig. 2. Overall architecture of MIAM. First, the multi-level features of the given image pair (Is, It) are generated to compute the multi-level correlation map
C. Next, MIAM refines C by a sequential combination of the Transformer aggregator T , the level convolutional aggregator Cl, and the spatial convolutional
aggregator Cs. Finally, the refined correlation map C′′ is used to estimate dense correspondences between the images. The Transformer aggregator integrates
the intra-level self-attention and the multi-scale inter-level self-attention with LN and FFN to refine correlation maps across spatial and level dimensions.

Single-Granularity Multi-Granularity

Fig. 3. Conceptual difference between CATs [2] and ours. Compared to
a single patch size, multiple patch sizes enrich the granularity of the basic
attention element.

solution incorporates a multi-scale inter-level self-attention
mechanism, where we treat similarity scores in a correlation
patch as an individual element for attention and consider
different patch sizes to enrich the type of the attention element.
The importance of similarities at different levels is captured
from their interactions along the level dimension, and is
then utilized to adaptively adjust their effects on building
correspondences. To further address the issue of increasing
ambiguities, we introduce a dual dimensional re-weighting
strategy in MIAM. This strategy generates two attention maps
by convolutional aggregation of the scores in the minimum
and maximum patches along the spatial and level dimensions,
respectively. The scores are then re-weighted using the at-
tention maps, which strengthens positive matches while sup-
pressing negative ones. Compared to the previous single patch
size [2], [11], the multiple patch sizes form a multi-granularity
refinement for the correlation map (Fig. 3). In experiments on
three popular semantic correspondence benchmarks, MIAM
achieves competitive performance in comparison with other
methods, both quantitatively and qualitatively.

II. METHODOLOGY

The proposed Multi-granularity Inter-level Attention-based
Matching (MIAM) network follows the classical three stages
of semantic correspondence (Fig. 2): feature extraction, cost
aggregation, and flow estimation.

A. Feature Extraction

Given a pair of images to be established dense corre-
spondences, referred to as the source and target images
Is, It ∈ RH×W×3, a CNN φ is utilized to extract the respective
multi-level features. Taking Is as an example, a sequence
of feature maps from different layers is extracted by the
feature backbone φ. From these maps, several are selected
and bi-linearly interpolated to the same spatial size h × w.
These resized feature maps create a multi-level feature set
Fs = {Fks ∈ Rhs×ws×dk}nl

k=1, where Fks denotes a feature
map at the k-th level, dk is the number of channels of Fks , nl
is the number of levels, and the subscript s is used only to
distinguish the two images, in other words, hs = ht = h and
ws = wt = w.

B. Cost Aggregation over Multi-granularity Refinement

The multi-level correlation map C ∈ Rhsws×htwt×nl is then
computed based on the two multi-level features Fs,Ft. Specifi-
cally, given the source and target feature maps Fks ,F

k
t at the k-

th level, the k-th level of C is computed as Ci,j,k = Fksi,: ·F
k
tj,:

,
where i, j ∈ R2, i = id(i), j = id(j), id(·) is a bijection
function that maps a 2D spatial position of a feature map of
shape h× w to an integer index in {1, . . . , hw}. In this way,
each feature map is treated as h ∗w local features, and Ci,j,k

reveals the similarity score between the two local features Fksi,:
and Fktj,: . Next, the correlation map C is refined by the multi-
granularity inter-level attention.
Multi-scale Inter-level Self-attention To explore the im-
pact of similarities from different levels on establishing
correspondences, we propose a multi-scale inter-level self-
attention mechanism. As illustrated in Fig. 4(a), the corre-
lation map C:,:,k ∈ Rhsws×htwt at each level is transformed
into a sequence of flattened patches with a fixed size, i.e.,
Rhsws×htwt → Rnp×p2 , where (p, p) is the size of each
patch, and np = hsws ∗ htwt/p2 is the resulting number of
patches. Then nl patches located at the same position across
all levels form the input sequence X ∈ Rnl×p2 for attention,
i.e., the similarity scores in each patch are treated as an
attention element. Therefore, the multi-level correlation map



(a) Multi-scale inter-level self-attention

(b) Level convolutional aggregator

(c) Spatial convolutional aggregator
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Fig. 4. Illustration of the multi-granularity refinement. (a) The multi-scale inter-level self-attention refines the correlation map by considering the similarity
scores of each patch as an attention element and designing multiple patch sizes. Dual dimensional re-weighting strategy consists of (b) the level convolutional
aggregator and (c) the spatial convolutional aggregator, which disambiguates similarity scores along the spatial and level dimensions.

C is transformed to np sequences, each with the length of nl
and the dimension of p2, i.e., Rhsws×htwt×nl → Rnp×nl×p2 .
The multi-head self-attention (MHSA) of the np sequences is
computed iteratively:

Q = XWQ, K = XWK , V = XWV

SAh(X) = softmax
(QK>√

dK

)
V

MHSA(X) = [SAh(X)]nh

h=1WO

(1)

where WQ,WK ∈ Rp2×dK , WV ∈ Rp2×dV , WO ∈
RnhdV ×p2 , [·] denotes the concatenation operation, h is the
head index, and nh is the number of heads. In this paper, we
have omitted the details of bias terms for brevity.

Furthermore, multiple patch sizes are designed to form the
multi-scale attention. The patch size determines the number
of the similarity scores in a patch. Using various patch
sizes can enrich the basic element type for attention. Thus,
the correlation map C undergoes multi-scale attention with
three different patch sizes P = {8, 16, 32}, and the three
outputs C = {C̃i ∈ Rnpi

×nl×pi2}3i=1 are reshaped back to
hsws × htwt × nl to compute their weighted sum:

Ĉ =

3∑
i=1

βiC̃i (2)

where Ĉ ∈ Rhsws×htwt×nl denotes the updated correlation
map, pi ∈ P, and βi is the learnable weight of each output. By
mining various interactions between the similarities along the
level dimension, the above self-attention can adaptively adjust
the impact of similarities from different levels, thus reducing
ambiguous matches.

We further design a Transformer-based aggregator T to
refine the multi-level correlation map. To achieve this, we
introduce a multi-head intra-level self-attention block [2] be-
fore the proposed inter-level self-attention block. The intra-
level attention captures the interactions between similarity
scores in a single-level correlation map. We then add a feed-
forward network (FFN) after each MHSA block. The FFN

block contains two linear layers with a GELU non-linearity.
Besides, layer normalization (LN) is applied before the MHSA
and FFN blocks for more effective optimization, a technique
widely used in current Transformer implementations. Resid-
ual connections are applied after each block, and necessary
reshaping operations are performed on the correlation map.
Dual Dimensional Re-weighting To further disambiguate
the correlation map, a dual dimensional re-weighting strategy
is introduced (Fig. 4). It complements the above attention
mechanism by analyzing the scores in the minimum and
maximum size patches, i.e., (1, 1) and (hw, hw).

Based on the concept that convolution operations combine
cross-channel and spatial information [1], [28], we implement
a level convolutional aggregator Cl and a spatial convolutional
aggregator Cs to infer a level attention map Al ∈ R1×1×nl

and a spatial attention map As ∈ Rhw×hw×1, respectively:

Al = σ2

(
W2σ1

(
W1GAP(C)

))
As = σ2

(
W4σ1(W3C)

) (3)

where GAP denotes the global average pooling, σ1 and σ2
denote the GELU and sigmoid functions respectively, and
W1 ∈ Rnl×

nl
r1 , W2 ∈ R

nl
r1
×nl , W3 ∈ Rnl×

nl
r2 and W4 ∈

R
nl
r2
×1 indicate the weights of the convolution operation with

a filter size of 1× 1 for downscaling or upscaling the channel
dimensions. The attention maps are then applied to re-weight
the input correlation map:

Cl(C) = Al �C

Cs(C) = As �C
(4)

where � denotes the element-wise multiplication. The level
convolutional aggregator Cl uses the pooling operation to
squeeze all scores in the largest patches of size (hw, hw)
at each level. The spatial convolutional aggregator Cs fuses
the multiple scores of each candidate match by focusing on
the smallest patches of size (1, 1). The resulting attention
maps highlight where to focus along both level and spatial
dimensions of the correlation map, thus enhancing positive
matches while suppressing negative ones.



TABLE I
COMPARISON OF PCK@ατ (%) ON PF-PASCAL, PF-WILLOW, AND SPAIR-71K. BOLD AND UNDERLINED NUMBERS INDICATE THE BEST AND THE

SECOND BEST PERFORMANCE, RESPECTIVELY. “FEAT.-LEVEL”: FEATURE-LEVEL, “FT. FEAT.”: FINE-TUNE FEATURE. “(F)” AND “(T)” INDICATE
FINE-TUNING-BASED TESTING AND TRANSFER TESTING, RESPECTIVELY.

Methods Feat.-level FT. feat. Aggregation
PF-PASCAL PF-WILLOW SPair-71k
PCK@αimg PCK@αobj PCK@αkp PCK@αobj

0.05(F) 0.1(F) 0.15(F) 0.1(T) 0.1(T) 0.1(F) 0.1(T)

CNNGeo [23] Single × - 41.0 69.5 80.4 - 69.2 20.6 -
A2Net [27] Single × - 42.8 70.8 83.3 - 68.8 22.3 -

WeakAlign [24] Single × - 49.0 74.8 84.0 - 70.2 20.9 -
RTNs [10] Single × - 55.2 75.9 85.2 - 71.9 25.7 -

NC-Net [26] Single X 4D Convolution 54.3 78.9 86.0 - 67.0 20.1 26.4
DCC-Net [8] Single × 4D Convolution 55.6 82.3 90.5 - 73.8 - 26.7

ANC-Net [15] Single × 4D Convolution - 86.1 - - - - 28.7
CHM [17] Single X 6D Convolution 80.1 91.6 94.9 79.4 69.6 46.3 30.1

SFNet [14] Multi × - 53.6 81.9 90.6 - 74.0 28.2 -
HPF [18] Multi - RHM 60.1 84.8 92.7 - 74.4 28.2 -
GSF [9] Multi × 2D Convolution 65.6 87.8 95.9 - 78.7 36.1 -

DHPF [19] Multi × RHM 75.7 90.7 95.0 77.6 71.0 37.3 27.4
SCOT [16] Multi - OT-RHM 63.1 85.4 92.7 - 76.0 35.6 -

MMNet [29] Multi X - 77.6 89.1 94.3 - - 40.9 -
CATs [2] Multi X Transformer 75.4 92.6 96.4 79.2 69.0 49.9 27.1
VAT [7] Multi X 4D Conv. & Trans. 78.2 92.3 96.2 81.6 - 55.5 -

TMatcher [11] Multi X Transformer 80.8 91.8 - 76.0 65.3 53.7 30.1

MIAM Multi X Transformer 77.5 93.6 96.9 79.8 70.0 50.5 28.2

Multi-granularity Refinement The above aggregators are
arranged in series to refine the multi-level correlation map
(Fig. 2). The process is designed based on two common
augmentation approaches for the correlation map [2], [7]: (1)
adding an appearance embedding from the image features to
suppress noise; (2) swapping the order of the two input images
to impose bidirectional matching consistency.

C′ = Cl
(
T1
(
[C, ψ(Ft)] +E1

))
+C

C′′ = Cs
(
T2
(
[C′
>
, ψ(Fs)] +E2

))>
+C

(5)

Two Transformer-based aggregators, T1 and T2, with shared
parameters are utilized, and combined with the level convolu-
tional aggregator Cl and the spatial convolutional aggregator
Cs, respectively. For (T1, Cl), the appearance embeddings
ψ(Ft) from target image features are concatenated with the
initial correlation map C, and a learnable positional embed-
ding E1 ∈ R(hsws+da)×htwt×nl is added as input, where
ψ : Rh×w×di → Rhw×da denotes the linear projection. The
first two dimensions of the output C′ ∈ Rhsws×htwt×nl

are then swapped to reflect the target-source order1. The
source appearance embeddings ψ(Fs) are concatenated with
the output and then added with another positional embedding
E2 ∈ R(htwt+da)×hsws×nl as input for (T2, Cs). The resulting
output C′′ ∈ Rhsws×htwt×nl is the final refined result.
Residual connections are applied to both outputs.

1The superscript > in Eq. (5) denotes the swapping operation on the first
two dimensions of the correlation map.

C. Flow Estimation & Training Objective

After refining the multi-level correlation map, we average
it along the level dimension. Then, we transform the averaged
correlation map into a dense flow field D̂ from the source to
target images by the kernel soft-argmax operation [14]. Finally,
we introduce a loss based on the Euclidean distance between
the predicted and ground-truth flow fields to train our model:

L = ||D− D̂|| (6)

The flow field D is constructed using ground-truth keypoints
following the protocol in [18]. It is assumed that the ground-
truth keypoints are provided for image pairs.

III. EXPERIMENTS

The performance of our MIAM is evaluated by comparing
it with several state-of-the-art methods. Additionally, ablation
studies are conducted on crucial components of MIAM to
analyze their effectiveness.

A. Experimental Settings & Implementation Details

The experiments are conducted on three popular bench-
marks: PF-PASCAL [5], PF-WILLOW [4] and SPair-71k [18].
We follow the general evaluation protocol to ensure a fair
comparison. For PF-PASCAL and PF-WILLOW, we train
MIAM on the training split of PF-PASCAL and evaluate
on the test splits of both. For SPair-71k, MIAM is trained
on the training split and then evaluated on the test. The
quality of semantic correspondence is evaluated using the
standard evaluation metric, probability of correct keypoints
(PCK), which depends on the threshold ατ · max(hτ , wτ ).



TABLE II
MEMORY AND RUN-TIME COMPARISON.

Methods Patch size Mem. (GB) Time (ms) PF-P PF-W

VAT [7] (1, 1) 2.2 59.6 92.3 81.6
CATs [2] (384, 1) 0.9 10.9 92.6 79.2

MIAM

(32, 32) 1.0 11.6 93.1 79.3
(16, 16) 0.9 12.9 93.4 79.4
(8, 8) 0.9 19.5 93.3 79.4

{8, 16, 32} 1.0 22.5 93.6 79.8

τ ∈ {img, obj, kp} indicates that the threshold relies on the
height and width of image, object bounding box, or bounding
box of keypoints, respectively. ατ ∈ {0.05, 0.1, 0.15} is a
tolerance factor.

ResNet-101 [6] pre-trained on ImageNet [3] is adopted as
the feature backbone φ. The spatial sizes of the input images
and the multi-level features are set to H = W = 256 and
h = w = 16, respectively. The number of feature levels is
set to nl = 8. We set the number of layers in the Transformer
aggregator T to 1, the dimensions of the QKV vectors and the
number of heads in the MHSA blocks to dK = dV = 48 and
nh = 6, and the dimensions of the appearance embeddings
to da = 128. The ratio parameters of the two convolutional
aggregators, Cs and Cl, are both set to r1 = r2 = 8.
MIAM is implemented by PyTorch [21], and is optimized via
AdamW [12] with an initial learning rate of 3× 10−5, which
gradually decreases during training. These hyperparameters
are fixed for all experiments. All experiments are run on a
single NVIDIA GeForce RTX 4090 GPU and an Intel Core
i9-13900K CPU.

B. Evaluation Results

Quantitative Results The quantitative results are illustrated
in Tab. I. Overall, MIAM achieves promising performance on
all three benchmarks. Methods that use multi-level features
perform better due to richer semantic information. MIAM
outperforms these methods with the highest PCK of 93.6%
(αimg = 0.1) on PF-PASCAL. In comparison to VAT [7],
MIAM achieves a lower PCK for SPair-71k. This could
be attributed to VAT’s use of high-dimensional convolution
and Swin Transformer to extend local receptive fields during
the cost aggregation stage. However, this design results in
longer run-time and larger memory requirements, which we
will discuss in the following efficiency experiments. We also
assess the correspondence quality of the model trained on
PF-PASCAL directly on SPair-71k (last column of Tab. I).
When combined with the results on PF-WILLOW, MIAM
demonstrates competitive transferability.
Efficiency Evaluation Further experiments are conducted to
evaluate the efficiency of MIAM by profiling the required
memory and run-time (Tab. II). We report the GPU mem-
ory consumed by a pair of images and the inference time
for their correspondences. The multi-scale inter-level self-
attention captures richer interactions between similarity scores,
but it also requires more memory and longer run-time due to

Source VAT CATs MIAM

Fig. 5. Qualitative results on PF-PASCAL. Red lines indicate failed cases.

TABLE III
ABLATION STUDIES OF MIAM ON PF-PASCAL.

Methods PCK@0.1

(a) Baseline 92.6
(b) Baseline+DDR 93.2
(c) Baseline+DDR+MIS 93.6

the combination of multiple patch sizes. Using a single size
results in a greater increase in running efficiency, but sacrifices
some performance.
Qualitative Results Fig. 5 visualizes the predicted corre-
spondences of several challenging image pairs. Compared
to VAT [7] and CATs [2], MIAM is able to distinguish
ambiguities and produce desired correspondences in cases
involving repetitive patterns and background clutter.

C. Ablation Study

Key Components To evaluate the individual effect of
MAIM’s key components, we perform ablation studies on
the multi-scale inter-level self-attention (MIS) and the dual
dimensional re-weighting (DDR) strategy. We define a base-
line model by excluding these two components. The baseline
model uses a single patch size (hw + da, 1) to replace
the multiple patch sizes P. The experiments are conducted
by successively incorporating each key component into the
baseline model. The results presented in Tab. III demonstrate
that the model’s performance improves from (a) to (b) and
from (b) to (c) as each component is added, highlighting the
effectiveness of the two key components in refining the multi-
level correlation map.



TABLE IV
ABLATION STUDIES ON CONVOLUTIONAL AGGREGATORS.

Order PCK@0.1

Spatial-Level 93.4
Level-Spatial 93.6

Convolutional Aggregators To analyze the impact of the
order of the two convolutional aggregators on the correspon-
dence quality, we compare two ordering ways: spatial-level
and level-spatial. The results in Tab. IV show that the level-
first order (93.6%) performs slightly better than the spatial-
first order (93.4%) with a difference of 0.2% on PF-PASCAL.
The reason for this may be that the spatial convolutional
aggregator implicitly embeds interactions between levels by
fusing multiple scores of all candidate matches. The level-
spatial order forms an explicit-implicit refining on the level
dimension of the multi-level correlation map.

IV. CONCLUSION

This paper introduces a Multi-granularity Inter-level
Attention-based Matching (MIAM) network for predicting im-
age correspondences. MIAM utilizes a multi-scale inter-level
self-attention, which is conditioned on multiple correlation
patch sizes, to adaptively adjust the effect of similarities from
different levels. Furthermore, we propose a dual dimensional
re-weighting strategy for disambiguating multi-level similar-
ities along the level and spatial dimensions. Experimental
results demonstrate the effectiveness of MIAM.
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“Neighbourhood consensus networks,” Proceedings of the Conference
on Neural Information Processing Systems, vol. 31, 2018.

[27] P. H. Seo, J. Lee, D. Jung, B. Han, and M. Cho, “Attentive semantic
alignment with offset-aware correlation kernels,” in Proceedings of the
European Conference on Computer Vision, 2018, pp. 349–364.

[28] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European Conference on
Computer Vision, 2018, pp. 3–19.

[29] D. Zhao, Z. Song, Z. Ji, G. Zhao, W. Ge, and Y. Yu, “Multi-scale
matching networks for semantic correspondence,” in Proceedings of the
International Conference on Computer Vision, 2021, pp. 3354–3364.


